• Title/Summary/Keyword: cytosol

Search Result 475, Processing Time 0.028 seconds

Benzoyltransferase and Phenylacetyltransferase Activities in Cholestatic Rat Liver Induced by Common Bile Duct Ligation

  • Kim, Young-Jin;Kim, You-Hee
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.67-71
    • /
    • 1999
  • We have investigated the effect of cholestasis on the closely related acyl-CoA:amino acid N-acyltransferase, benzoyltransferase, and phenylacetyltransferase activities in rat liver. Benzoyltransferase and phenylacetyltransferase activities in the liver cytosol, mitochondria, and microsome were investigated for a period of 42 d after common bile duct ligation. Both the mitochondrial and microsomal benzoyltransferases showed significant increase in their activities between the 1st and 7th day after common bile duct ligation, although the cytosolic benzoyltransferase activity did not show a significant change compared to the activities from the sham-operated control. The cytosolic phenylacetyltransferase activity showed a significant increase between the 1st and 2nd day, the mitochondrial activity showed a significant increase between the 2nd and 7th day, and microsomal activity showed a significant increase between the 1st and 7th day, respectively. Enzyme kinetic parameters of hepatic benzoyltransferase were analyzed using benzoyl coenzyme A as a substrate with the preparations from the 1st day post-ligation. Enzyme parameters of hepatic phenylacetyltransferase were also analyzed using phenylacetyl coenzyme A as a substrate with the preparations from the 2nd day post-ligation. The results indicated that although the $K_m$ values of these enzymes were about the same as the sham-operated control, the $V_{max}$ values of both enzymes increased significantly. These results, therefore, suggest that the biosynthesis of benzoyltransferase and phenylacetyltransferase has been induced in response to cholestasis.

  • PDF

Ectopic Expression of Mitochondria Endonuclease Pnu1p from Schizosaccharomyces pombe Induces Cell Death of the Yeast

  • Oda, Kaoru;Kawasaki, Nami;Fukuyama, Masashi;Ikeda, Shogo
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1095-1099
    • /
    • 2007
  • Endonuclease G (EndoG) is a mitochondrial non-specific nuclease that is highly conserved among the eukaryotes. Although the precise role of EndoG in mitochondria is not yet known, the enzyme is released from the mitochondria and digests nuclear DNA during apoptosis in mammalian cells. Schizosaccharomyces pombe has an EndoG homolog Pnu1p (previously named SpNuc1) that is produced as a precursor protein with a mitochondrial targeting sequence. During the sorting into mitochondria the signal sequence is cleaved to yield the functionally active endonuclease. From the analogy to EndoG, active extramitochondrial Pnu1p may trigger cell killing by degrading nuclear DNA. Here, we tested this possibility by expressing a truncated Pnu1p lacking the signal sequence in the extramitochondrial region of pnu1-deleted cells. The truncated Pnu1p was localized in the cytosol and nuclei of yeast cells. And ectopic expression of active Pnu1p led to cell death with fragmentation of nuclear DNA. This suggests that the Pnu1p is possibly involved in a certain type of yeast cell death via DNA fragmentation. Although expression of human Bak in S. pombe was lethal, Pnu1p nuclease is not necessary for hBak-induced cell death.

Acceleration of heat shock-induced collagen breakdown in human dermal fibroblasts with knockdown of NF-E2-related factor 2

  • Park, Gunhyuk;Oh, Myung Sook
    • BMB Reports
    • /
    • v.48 no.8
    • /
    • pp.467-472
    • /
    • 2015
  • Heat shock increases skin temperature during sun exposure and some evidence indicates that it may be involved in skin aging. The antioxidant response mediated by the transcription factor NF-E2-related factor 2 (Nrf2) is a critically important cellular defense mechanism that serves to limit skin aging. We investigated the effects of heat shock on collagenase expression when the antioxidant defense system was downregulated by knockdown of Nrf2. GSH and collagenases were analyzed, and the expression of inducible Nrf2, HO-1, and NQO1 was measured. HS68 cells were transfected with small interfering RNA against Nrf2. Heat shock induced the downregulation of Nrf2 in both the cytosol and nucleus and reduced the expression of HO-1, GSH, and NQO1. In addition, heat-exposed Nrf2-knockdown cells showed significantly increased levels of collagenase protein and decreased levels of procollagen. Our data suggest that Nrf2 plays an important role in protection against heat shock-induced collagen breakdown in skin. [BMB Reports 2015; 48(8): 467-472]

The subcellular distribution of MnSOD alters during sodium selenite-induced apoptosis

  • Guan, Liying;Jiang, Qian;Li, Zhushi;Huang, Fang;Ren, Yun;Yang, Yang;Xu, Caimin
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.361-366
    • /
    • 2009
  • It was reported that high doses of sodium selenite can induce apoptosis of cancer cells, but the molecular mechanisms are poorly understood. Manganese superoxide dismutase (MnSOD) converts superoxide radical to hydrogen peroxide within the mitochondrial matrix and is one of the most important antioxidant enzymes. In this study, we showed that 20 ${\mu}M$ sodium selenite could alter subcellular distribution of MnSOD, namely a decrease in mitochondria and an increase in cytosol. The alteration of subcellular distribution of MnSOD is dependent on the production of superoxide induced by sodium selenite.

The Effects of Chelidonii Herba Extract on Apoptosis in Human Stomach Adenocarcinoma Cell Line (백굴채(白屈菜)가 Stomach Adenocarcinoma Cell Line의 Apoptosis에 미치는 영향)

  • Kim, Sang-Chan;Lee, Sang-Tae;Kim, Dae-Jun;Byun, Joon-Seok
    • Herbal Formula Science
    • /
    • v.13 no.1
    • /
    • pp.71-83
    • /
    • 2005
  • Chelidonii Herba (Baekgulchae in Korean: CHE), a commonly used herb in Korea, Japan and China, is widely used in the treatment of stomach cancer, jaundice, gastric ulcer, edema and pain of stomach. In the present study, we demonstrated that CHE induces apoptosis in AGS cells, human stomach adenocarcinoma cell line. One of the most important recent advances in cancer research is the recognition that apoptosis plays a major role in both tumor formation and treatment response, In this study, CHE caused a decrease of viability in AGC cells. When AGS cells were treated with CHE, cells showed dose-dependent manner apoptotic cell death. Increased apoptotic cell death, exposured to CHE, resulted from induction of Bad translocation to mitochondria, cytochrome-c release from mitochondria to cytosol, activation of caspase-3, 8, 9, and PARP cleavage. These results suggest that CHE may be potential therapeutic approach in the clinical management of stomach adenocarcinoma.

  • PDF

The Expression and the Subcellular Localization of Regulatory Subunits of Class IA Phosphoinositide 3-Kinase in L6 Skeletal Muscle Cell

  • Woo Joo-Hong;Lim Jeong-Soon;Kim Hye-Sun
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.201-208
    • /
    • 2006
  • PI3-kinase activity through p85, the regulatory subunit of class IA PI3-kinase, is indispensable for the growth, differentiation, and survival of skeletal muscle cells, but little is known about the function of other regulatory subunits such as p55 and p50. We examined the subcellular localization and the expression of the regulatory subunits of class IA PI3-kinase in L6 myoblasts. Both p55 and p50 as well as p85 were expressed in L6 myoblasts. Whereas p85 was localized at both cytosolic and nuclear tractions, p55 and p50 were localized at only the nuclear traction. During the differentiation of L6 myoblasts, the protein concentrations of both p55 and p50 were decreased but that of p85 was not significantly changed. Menadione-induced oxidative stress induced the translocation of p85 from cytosol to nucleus and the increase of p55 expression. These results suggest that the regulatory subunits of class IA PI3-kinase play an important role in L6 myoblasts.

  • PDF

Salt Tolerance in Plants - Transgenic Approaches

  • Sangam S.;Jayasree D.;Reddy K.Janardhan;Chari P.V.B.;Sreenivasulu N.;Kishor P.B.Kavi
    • Journal of Plant Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Salinity is one of the major limiting factors for agricultural productivity. In plants, accumulation of osmolytes plays a pivotal role in abiotic stress tolerance. Likewise, exclusion or compartmentation of $Na^+$ ions into vacuoles provides an efficient mechanism to avert deleterious effects of $Na^+$ in the cytosol. Both vacuolar and plasma membrane sodium transporters and $H^+-ATPases$ can provide the necessary ion homeostasis. A variety of crop plants were engineered with respect to the synthesis of osmoprotectants and ion-compartmentation, but there are other cellular pathways involved in the salinity responses that are still not completely explored. Genomics approaches are increasingly used to identify genes and pathway changes involved in salt-tolerance. The new knowledge may be used via guided genetic engineering of multiple genes to create crop plants with significantly increased productivity in saline soils. This review surveys how plants deal with high salt conditions and how salt tolerance can be improved by transgenic approaches.

Ursolic Acid Reduces Mycobacterium tuberculosis-Induced Nitric Oxide Release in Human Alveolar A549 cells

  • Zerin, Tamanna;Lee, Minjung;Jang, Woong Sik;Nam, Kung-Woo;Song, Ho-yeon
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.610-615
    • /
    • 2015
  • Alveolar epithelial cells have been functionally implicated in Mycobacterium tuberculosis infection. This study investigated the role of ursolic acid (UA)-a triterpenoid carboxylic acid with potent antioxidant, anti-tumor, anti-inflammatory, and anti-tuberculosis properties in mycobacterial infection of alveolar epithelial A549 cells. We observed that M. tuberculosis successfully entered A549 cells. Cytotoxicity was mediated by nitric oxide (NO). A549 toxicity peaked along with NO generation 72 h after infection. The NO generated by mycobacterial infection in A549 cells was insufficient to kill mycobacteria, as made evident by the mycobacteria growth indicator tube time to detect (MGIT TTD) and viable cell count assays. Treatment of mycobacteria-infected cells with UA reduced the expression of inducible nitric oxide synthase, NO generation, and eventually improved cell viability. Moreover, UA was found to quench the translocation of the transcription factor, nuclear factor kappa B (NF-${\kappa}B$), from the cytosol to the nucleus in mycobacteria-infected cells. This study is the first to demonstrate the cytotoxic role of NO in the eradication of mycobacteria and the role of UA in reducing this cytotoxicity in A549 cells.

Ligand-Independent Activation of the Androgen Receptor by Insulin-Like Growth Factor-I and the Role of the MAPK Pathway in Skeletal Muscle Cells

  • Kim, Hye Jin;Lee, Won Jun
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.589-593
    • /
    • 2009
  • In this study, the roles of the p38 MAPK, ERK1/2 and JNK signaling pathway in IGF-I-induced AR induction and activation were examined. C2C12 cells were treated with IGF-I in the absence or presence of various inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), and JNK (SP600125). Inhibition of the MAPK pathway with SB203580, PD98059, or SP600125 significantly decreased IGF-I-induced AR phosphorylation and total AR protein expression. IGF-I-induced nuclear fraction of total AR and phosphorylated AR were significantly inhibited by SB203580, PD98059, or SP600125. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by those inhibitors in dose-dependent manner. Confocal images showed that IGF-I-induced AR nuclear translocation from cytosol was significantly blocked by SB203580, PD98059, or SP600125, suggesting that the MAPK pathway regulates IGF-I-induced AR nuclear localization in skeletal muscle cells. The present results suggest that the MAPK pathways are required for the ligand-independent activation of AR by IGF-I in C2C12 skeletal muscle cells.

Broad Bean Wilt Fabaviruses and Their Specific Ultrastructures (잠두 위조 바이러스와 세포 미세구조)

  • Choi, Hong-Soo;Choi, Jeom-Deog;Lee, Keum-Hee;Kim, Jeong-Soo
    • Applied Microscopy
    • /
    • v.31 no.3
    • /
    • pp.215-222
    • /
    • 2001
  • Pathogenicities of the five BBWV isolates were differentiated by the reactions on the 29 host plants including Chenopodium amaranticolor. Three specific ultrastructures were observed in cells infected with BBWV The first ultrastructure was the tube made of $1\sim2$ layers of virus particles. The second one was the comb structure consists of round and angled structures. The last one was the membrane proliferation in the cytosol.

  • PDF