• 제목/요약/키워드: cytosine

검색결과 227건 처리시간 0.03초

Assessment of Risks and Benefits of Using Antibiotics Resistance Genes in Mesenchymal Stem Cell-Based Ex-Vivo Therapy

  • Narayan Bashyal;Young Jun Lee;Jin-Hwa Jung;Min Gyeong Kim;Kwang-Wook Lee;Woo Sup Hwang;Sung-Soo Kim;Da-Young Chang;Haeyoung, Suh-Kim
    • International Journal of Stem Cells
    • /
    • 제16권4호
    • /
    • pp.438-447
    • /
    • 2023
  • Recently, ex-vivo gene therapy has emerged as a promising approach to enhance the therapeutic potential of mesenchymal stem cells (MSCs) by introducing functional genes in vitro. Here, we explored the need of using selection markers to increase the gene delivery efficiency and evaluated the potential risks associated with their use in the manufacturing process. We used MSCs/CD that carry the cytosine deaminase gene (CD) as a therapeutic gene and a puromycin resistance gene (PuroR) as a selection marker. We evaluated the correlation between the therapeutic efficacy and the purity of therapeutic MSCs/CD by examining their anti-cancer effect on co-cultured U87/GFP cells. To simulate in vivo horizontal transfer of the PuroR gene in vivo, we generated a puromycin-resistant E. coli (E. coli/PuroR) by introducing the PuroR gene and assessed its responsiveness to various antibiotics. We found that the anti-cancer effect of MSCs/CD was directly proportional to their purity, suggesting the crucial role of the PuroR gene in eliminating impure unmodified MSCs and enhancing the purity of MSCs/CD during the manufacturing process. Additionally, we found that clinically available antibiotics were effective in inhibiting the growth of hypothetical microorganism, E. coli/PuroR. In summary, our study highlights the potential benefits of using the PuroR gene as a selection marker to enhance the purity and efficacy of therapeutic cells in MSC-based gene therapy. Furthermore, our study suggests that the potential risk of horizontal transfer of antibiotics resistance genes in vivo can be effectively managed by clinically available antibiotics.

In vitro에서 1-β-D-arabinofuranosyl-cytosine의 염색체 파열 유도 (1-β-D-Arabinofuranosyl-cytosine Induces Chromosomal Breaks in vitro)

  • 전인상
    • Clinical and Experimental Pediatrics
    • /
    • 제46권12호
    • /
    • pp.1186-1193
    • /
    • 2003
  • 목 적 : 염색체 취약부위는 세포를 특정의 화학물질에 노출시키거나 특수한 배양조건에서 배양 할 때 쉽게 파열되는 염색체상의 특정구역이다. 취약부위는 유전성질환 및 악성종양과 관련이 있으며, 현재에는 분자생물학적 실험기법의 개발로 분자수준에서 이해가 되고 있다. 새로운 취약부위 및 취약부위의 발현을 높이거나 쉽게 관찰할 수 있는 실험실적 조건을 알아보기 위하여 항암제로 사용되는 Ara-C를 이용하여 염색체파열을 조사하여 보았다. 한편 염색체 취약부위가 종양형성과 관련이 있다는 사실에 기초하여 Ara-C에 의해 발열되는 취약부위와 암유전자가 위치하는 부위 및 종양에서 일정하게 염색체변이가 관찰되는 특정의 염색체 부위와의 상관관계도 알아보고자 하였다. 방 법 : 정상 성인 남녀 각각 3명의 말초혈액 내 T-림프구를 세포배양 후 Ara-C를 첨가하고 다시 caffeine을 처리한 뒤 종전에 시행했던 방법과 동일하게 검체 처리하여 염색체파열 부위를 관찰하였다. 염색체 취약부위는 염색체상의 일정부위에서 100개의 염색체파열 당 2회 이상의 염색체파열이 6명 중 4명 이상에서 관찰되는 경우로 정의하였다. 결 과 : 1) T-림프구를 엽산이 부족한 MEN-FA 배지에서 배양 시 Ara-C는 100개의 분열세포 당 252.1개의 염색체파열을 유도하였으며, Ara-C를 처리하지 않은 대조군에서 25.2개가 관찰되어 Ara-C를 처리한 경우에 염색체파열이 의미 있게 많았다(P<0.05). 2) Ara-C에 의한 염색체파열은 엽산이 부족한 MEM-FA 배지에서 엽산이 충분한 RPMI 1640 배지에서 보다 많이 되었다(P<0.05). 한편, 2.0 mM 농도의 caffeine은 엽산만 부족한 배양 배지에서는 염색체파열을 상승시키지 못했으나, Ara-C와 병행사용 시 상승시켰다. 3) Ara-C에 의해 가장 많이 파열된 부위는 3p14.2.이었으며, 발현된 취약부위는 20부위였다. 4) 발현된 취약부위 중 7 부위는 JUN, SKI, REL, N-MYC, FHIT, MET, ETS-1, FOS의 암유전자가 위치하는 부위와 일치하였으며, 15부위는 급성림프구성백혈병, 급성골수성백혈병, 만성림프구성백혈병, 골수이형성성증, 악성흑색종, 신경모세포종, 소세포성폐암, 난소암, 유전성 신장암, 혼합성 지방육종시 염색체상에 이상이 있는 부위와 일치하였다. 결 론 : S기 특이성 항암제인 Ara-C는 정상성인의 T-림프구를 엽산이 부족한 MEM-FA배지에서 배양시 염색체 파열을 대조군에 비해 의미 있게 유도하였다. 한편으로 Ara-C 특이성 염색체 취약부위는 암유전자가 위치하는 부위 및 특정 종양에서 관찰되는 특이한 염색체변이가 있는 부위와 상당 예에서 일치하여 아직 알려지지 않은 암유전자를 찾거나 분석하는데 기초적인 자료를 제공할 뿐 아니라 염색체변화와 종양형성과정의 상관관계를 이해하는데 도움이 될 것으로 사료된다.

Characterization of a New Acidophilic Acetobacter sp. Strain HA Isolated from Korean Traditional Fermented Vinegar

  • CHUN, HONG-SUNG;SUNG-JUN KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권2호
    • /
    • pp.108-114
    • /
    • 1993
  • A new strain of acidophilic, acetogenic bacterium, Acetobacter sp. strain HA was isolated by selective enrichment from the traditionally fermented rice wine vinegar in Korea. It was a gram-negative, non-motile short rod and oxidized acetate and lactate. The optimal temperature and pH for growth were $28^{\circ}C$ and 4.0, respectively. The strain HA differed from other Acetobacter species by growing well on methanol, xylitol, inositol, dulcitol, D-xylose, L-arabinose, and D-mannose as sole sources of carbon and energy. The isolated strain HA did not produce $\gamma$-pyrones from glucose and did not produce ketone bodies from glycerol. The quinone system used in this study was an ubiquinone-9 isoprene unit. The guanine-plus-cytosine content of the DNA was 50.7 mol%, and the major cellular fatty acids were $C_{18:1} and C_{16:0}$.

  • PDF

양측 전두엽, 측두-두정엽의 다초점성 백색질 변화를 보이는 1형 근육 긴장성 이영양증 (Myotonic Dystrophy Type 1 (DM1) with Multifocal White Matter Changes in Both Frontotemporoparietal Lobes)

  • 임정철;조규노;김응규;배종석
    • Annals of Clinical Neurophysiology
    • /
    • 제13권1호
    • /
    • pp.48-50
    • /
    • 2011
  • Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystem disorder caused by the expansion of cytosine-thymine-guanine (CTG) repeats in the myotonic dystrophy protein kinase (DMPK) gene. Some literatures indicated that DM1 had incidental CNS lesions such as white matter lesions and diffuse gray matter atrophy. We report a patient with DM1 whose brain magnetic resonance image (MRI) showed multifocal hyperintense lesions and cystic lesion on both frontotemporoparietal lobes.

Complete genome sequence of the acidic cellulase producer Bacillus amyloliquefaciens ATC6

  • Kim, Sang Hoon;Oh, Ju Kyoung;Kim, Yong Ho;Kang, Dae-Kyung
    • Journal of Animal Science and Technology
    • /
    • 제62권5호
    • /
    • pp.761-763
    • /
    • 2020
  • Here we report the complete genome sequence of Bacillus amyloliquefaciens ATC6, which produces acidic cellulase, isolated from pig feces. The genome is 4,062,817 bp in length and has a guanine-cytosine (GC) content of 46.27%. Among the predicted 3,913 protein-coding genes, two glucanase genes, which are involved in lichenan and cellulose degradation, were found. This genome analysis helps clarify the mechanism involved in cellulose biodegradation and support its application for efficient use of livestock feeds.

Spontaneous Nanoparticle Formation From a Fluorescent Nucleoside Analogue

  • Bang, Eun-Kyoung;Moon, Do-Hyun;Kim, Byeang-Hyean
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.2906-2910
    • /
    • 2011
  • A fluorescent nucleoside analogue, $^AC$, featuring two non-complementary nucleobases linked through an ethynyl group, was synthesized. The extended ${\pi}$-conjugation imparts $^AC$ with red-shifted absorbance (relative to adenine and cytosine) and pale-blue fluorescence. It spontaneously forms nanoparticles, which exhibit considerably enhanced fluorescence, without the help of any additional stabilizing agent. The DMSO/water ratio was an important factor influencing the construction of the NPs. X-ray crystallography confirmed the structure of $^AC$; dynamic light scattering and scanning electron microscopy confirmed the existence of the nanoparticles.

Enantiomeric Synthesis of Novel Apiosyl Nucleosides as Potential Antiviral Agents

  • Kim, Ai-Hong;Hong, Joon-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.221-225
    • /
    • 2004
  • A series of 2',3'-dideoxy-3'-fluoro-D-apiosyl nucleosides 15, 16, 17 and 18 were synthesized enantiomerically with L-Gulonic- ${\gamma}$-lactone as the starting material. The reduction of butenolide 1 with DIBAL-H followed by the Luche procedure afforded the allylic alcohol 2. Ozonolysis and the reduction of compound 4 induced the cyclized lactol, which was acetylated to give the acetate 7. Condensation of the acetate 7 with silylated pyrimidine ($N^4$-benzoyl cytosine) and a purine base (6-chloropurine) under Vorbruggen conditions and deblocking afforded a series of fluorinated apiosyl nucleosides.

Use of DNA Methylation for Cancer Detection and Molecular Classification

  • Zhu, Jingde;Yao, Xuebiao
    • BMB Reports
    • /
    • 제40권2호
    • /
    • pp.135-141
    • /
    • 2007
  • Conjugation of the methyl group at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3' sequence (DNA methylation) is the best studied epigenetic mechanism, which acts together with other epigenetic entities: histone modification, chromatin remodeling and microRNAs to shape the chromatin structure of DNA according to its functional state. The cancer genome is frequently characterized by hypermethylation of specific genes concurrently with an overall decrease in the level of 5-methyl cytosine, the pathological implication of which to the cancerous state has been well established. While the latest genome-wide technologies have been applied to classify and interpret the epigenetic layer of gene regulation in the physiological and disease states, the epigenetic testing has also been seriously explored in clinical practice for early detection, refining tumor staging and predicting disease recurrence. This critique reviews the latest research findings on the use of DNA methylation in cancer diagnosis, prognosis and staging/classification.

A Genome-Specific PCR Primer Design Program for Open Reading Frames

  • Keong, Kwoh-Chee;Lim, Kok-Wui
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.147-150
    • /
    • 2005
  • Proper PCR primer design determines the success or failure of Polymerase Chain Reaction (PCR) reactions. In this project, we develop GENE-PRIMER, a genomes specific PCR primer design program that is amenable to a genome-wide scale. To achieve this, we incorporated various parameters with biological significance into our program, namely, primer length, melting temperature of primers Tm, guanine/cytosine (GC) content of primer, homopolymeric runs in primer and self-hybridization tendency of primer. In addition, BLAST algorithm is utilized for the purpose of primer specificity check. In summary, selected primers adhered to both physico-chemical criteria and also display specificity to intended binding site in the genome.

  • PDF

석면에 의한 CHO 세포의 염색체 이상 유발 기전에 관한 연구 (Mechanism of Asbestos Induced Chromosome Aberration in CHO Cells)

  • 정해원;김현주
    • Toxicological Research
    • /
    • 제11권1호
    • /
    • pp.117-125
    • /
    • 1995
  • In order to examine the mechanism of asbestos clastogenicity, CHO cells were treated with chrysotile and crocidolite. Crocidolite and chrysotile were able to induce lipid peroxidation in a dose dependent manner. Ultrafiltrate of culture media from CHO cells treated with chrysotile/crocidolite induced sister chromatid exchange in CHO cells. Ultrafiltrate of culture media from CHO cells treated with chrysotile induced chromosome aberration but it was not statistically significant. Simultaneous treatment of 3-Aminobenzamide (3-AB) or cytosine arabinoside (Ara C) with crocidolite had no effect on the frequency of chromosome aberration by crocidolite whetease posttreatment of caffeine significantly increased the chromosomel aberration by crocidolite. This indicated that DNA damage by asbestos took place at late stage of cell cycle. The results suggested that the ultrafiltrate of media contained clastogenic factor (CF) and lipid peroxidation might be involved in the formation of CF.

  • PDF