• Title/Summary/Keyword: cytoplasm

Search Result 1,720, Processing Time 0.024 seconds

Expression of β-arrestin 1 in Gastric Cardiac Adenocarcinoma and its Relation with Progression

  • Wang, Li-Guang;Su, Ben-Hua;Du, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5671-5675
    • /
    • 2012
  • Objective: Arrestins act as mediators of G protein-coupled receptor (GPCR) desensitization and trafficking, also actin as a scaffold for many intracellular signaling network. The role that ${\beta}$-arrestin 1 plays in gastric cardiac adenocarcinoma (GCA) and its clinicopathologic significance are untouched. Methods: Fifty patients with gastric cardiac adenocarcinoma were retrospectively enrolled and ${\beta}$-arrestin 1 was detected using immunohistochemistry in tissue samples. Results: Nuclear expression of ${\beta}$-arrestin 1 was observed in 78% of GCA samples (39/50) and cytoplasmic expression in 70% (35/50). ${\beta}$-arrestin 1 could be found in both nucleus and cytoplasm of 54% GCA (27/50) or in either of them in 94% (47/50). ${\beta}$-arrestin 1 protein positivity in well/moderately differentiated carcinomas was significantly higher than that in poorly differentiated carcinomas (P=0.005). We found increased expression of ${\beta}$-arrestin 1 in cytoplasm was correlated with lymph nodal metastasis (P=0.002) and pathological lymph nodal staging (P=0.030). We also found ${\beta}$-arrestin 1 to be over-expressed in glandular epithelia cells of mucinous adenocarcinoma, a tumour type associated with an adverse outcome of gastric cardiac adenocarcinoma (P=0.022). Conclusion: ${\beta}$-arrestin 1 is over-expressed in the nucleus and/or cytoplasm of gastric cardiac adenocarcinoma. However, ${\beta}$-arrestin 1 has no relationship with the prognosis of gastric cardiac adenocarcinoma (P>0.05). Our data imply that ${\beta}$-arrestin 1 in cytoplasm may be involved in differentiation and metastasis of gastric cardiac adenocarcinoma.

Morphogenetic Alterations of Alternaria alternata Exposed to Dicarboximide Fungicide, Iprodione

  • Kim, Eunji;Lee, Hye Min;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.95-100
    • /
    • 2017
  • Fungicide-resistant Alternaria alternata impede the practical control of the Alternaria diseases in crop fields. This study aimed to investigate cytological fungicide resistance mechanisms of A. alternata against dicarboximide fungicide iprodione. A. alternata isolated from cactus brown spot was cultured on potato-dextrose agar (PDA) with or without iprodione, and the fungal cultures with different growth characteristics from no, initial and full growth were observed by light and electron microscopy. Mycelia began to grow from one day after incubation (DAI) and continued to be in full growth (control-growth, Con-G) on PDA without fungicide, while on PDA with iprodione, no fungal growth (iprodione-no growth, Ipr-N) occurred for the first 3 DAI, but once the initial growth (iprodione-initial growth, Ipr-I) began at 4-5 DAI, the colonies grew and expanded continuously to be in full growth (iprodione-growth, Ipr-G), suggesting Ipr-I may be a turning moment of the morphogenetic changes resisting fungicidal toxicity. Con-G formed multicellular conidia with cell walls and septa and intact dense cytoplasm. In Ipr-N, fungal sporulation was inhibited by forming mostly undeveloped unicellular conidia with degraded and necrotic cytoplasm. However, in Ipr-I, conspicuous cellular changes occurred during sporulation by forming multicellular conidia with double layered (thickened) cell walls and accumulation of proliferated lipid bodies in the conidial cytoplasm, which may inhibit the penetration of the fungicide into conidial cells, reducing fungicide-associated toxicity, and may be utilized as energy and nutritional sources, respectively, for the further fungal growth to form mature colonies as in Ipr-G that formed multicellular conidia with cell walls and intact cytoplasm with lipid bodies as in Con-G.

Ultrastructural Study on the Maturation of Oocyte in the African Giant Snail, Achatina fulica (아프리카 왕달팽이 (Achatina fulica) 난모세포 성숙에 관한 미세구조)

  • Chang, Nam-Sub;Han, Jong-Min
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2000
  • The observation using an electron microscope shows that the maturation of the oocyte of African giant snail, Achatina fulica, proceeds over three stages. The oocyte of stage 1 is a small elliptic cell $(220\times400{\mu}m)$ whose light nucleoplasm contains two nucleoli. In its cytoplasm, a number of mitochondria, rough endoplasmic reticula, and ribosomes are found, while yolk granules are not. The nucleus of the oocyte of stage 2 is relatively large in comparison with the volume of cytoplasm, and contains one nucleolus. In the nuclear envelope comprising inner and outer double membrane, there are found a lot of nuclear pores for materials to pass through. A number of mitochondria, Golgi complex and lipid yolk granules appears in the cytoplasm, and proteinous yolk granules begin to form and mature in the vacuoles of various sizes ($0.8\sim3.0{\mu}m$ in diameter). The oocyte of stage 3 has an enlarged nucleolus. Material transportation through nuclear pore is not found any longer. The cytoplasm in this stage is filled with proteinous and lipid yolk granules. The microvilli are developed around the egg plasma membrane.

  • PDF

Cell Structures of Spermatogenesis of Rainbow Trout, Oncorhynchus mykiss in Reproductive Cycles (번식주기(繁殖週期)에 따른 무지개 송어(松魚) 정자형성시(精子形成時) 세포구조(細胞構造)의 변화(變化))

  • Yoon, Jong-Man;Kim, Gye-Woong;Park, Chung-Kil;Roh, Soon-Chang
    • Applied Microscopy
    • /
    • v.24 no.3
    • /
    • pp.55-66
    • /
    • 1994
  • This study was carried out to investigate the histological changes of sperm cells in testis, obtained from 100 of 3-year-old male rainbow trout (Oncorhynchus mykiss) collected and analysed from March in 1992 to February in 1993. Especially, the ultrastructural changes of spermatogonia, primary and secondary spermatocytes, spermatids, and spermatozoa were examined to describe the reproductive cycles of this species. The results obtained in this study were as follows: The ultrastructures of the gonadotrophs largely parallel the cyclical changes in the testes. Each nest of cells belongs to one spermatogenetic stage, although nests at different stages can be found within the one lobule. At first keterochromatin is dispersed and then is condensed. In mature gamete, the nucleus is dense and homogeneous. The nuclear membrane appeared at the beginning of differentiation. In spermatogonia, Sertoli cells are located at the periphery of their cytoplasm. In the primary spermatocytes, the small mitochondria are abundant over the outer cytoplasm. During cell differentiation, the cytoplasm decreases and the nucleus increases. In spermatids, the protein masses moved towards the posterior part of the nucleus. In late spermatids, the two large mitochondria are located over the cytoplasm. In spermatozoa, two spheroidal mitochondria (about 145nm long) are situated in parallel between the nucleus and the axoneme. Spermatozoa mitochondria are assembled into an organized sheath surrounding the outer dense fibres and axoneme of the flagellar midpiece. The two centrioles are quite separate and the central pair and sheath complex of the flagellum is inserted into the base of the distal centriole.

  • PDF

Electron Microscopic Study on the Spermiogenesis of Cipangopaludina chinensis malleata (Reeve) (논우렁이[Cipangopaludina chinensis malleata (Reeve)]의 精蟲形成 過程에 관한 電子顯微鏡的 硏究)

  • Kim, Ju-Hee;Park, Won-Chul
    • The Korean Journal of Zoology
    • /
    • v.29 no.2
    • /
    • pp.121-140
    • /
    • 1986
  • The spermiogenesis of Cipangopaludina chinensis malleata began with the changes of nucleus and cytoplasm. The chromatin in the nucleus began to stack and condense around perinuclear envelope. Axonema (doublet microtubules of 9+2) appeared in the cytoplasm. After this process, the cytoplasm was protruded and the bell-shaped nucleus was located on protruding part of it. The electron dense masses were distributed throughout cytoplasm and lysed or secreted by exocytosis of lysosomal vacuoles. Especially, some mitochondria were migrated by the doublet microtubules of axonema toward nucleus. The axoneme was enclosed by electron dense materials after exocytosis of unnecessary materials for the tail formation. The electron dense masses were released and migrated into the each part through microtubules or axonemal doublet microtubules as the granular particles. These granular particles were containing glycogen. Ultimately, the condensed head developed into helical and neck region into cylindrical shape respectively. The mitochondria which have regular lamellar layers at cross axis became to middle piece, and then spermatozoon was completely matured. Thus, these phenomena showed special processes in spermiogenesis, those were as follows; chromatin in the head was condensed, the head was changed into helical shape, and cytoplasmic materials are migrated and transferred into the each part in the tail by mitochondria and microtubules.

  • PDF

Functional Analyses of Centrosomal Proteins, Nek2 and NuMA in Development of Mouse Gametes and Early Embryos

  • Youn, Hong-Hee;Oh, Hwa-Soon;Lee, Kwang-Hee;Son, Chae-Ick;Lee, Sang-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.96-96
    • /
    • 2003
  • Nek2 (NIMA-related protein) is a mammalian cell cycle-regulated kinase that involves in chromosome condensation and centrosome regulation and NuMA (nuclear mitotic apparatus protein) is involved in spindle assembly during a cell cycle. The cellular distribution and organization of the centrosomal components is completely unknown during fertilization and embryonic development. We examined distribution of two well-known centrosomal proteins, Nek2 and NuMA in mouse gametes and embryos to get an insight in the reorganization of centrosomal proteins during germ cell development and early fertilization. Spermatogenic cells, gametes, and embryos were analyzed with anti-Nek2 or -NuMA antibodies by immunological assay, RT-PCR, and overexpression through gene transfection. Mitotically or meiotically active spermatogenic cells were intensively stained with these antibodies in both centrosomes and cytoplasm, whereas the oocytes showed different staining patterns depending on the meiotic stages. During maturation, GV, GVBD, and MI stage were clearly stained with NuMA antibody in the nucleus or cytoplasm at MII. Also, Nek2 was detectable in cytoplasm as scattered spots or chromosome associated at MII. In early developmental embryo, NuMA was detected in nucleus of each blastomere, while Nek2 was detected in cytoplasm. In contrast to previously reported results, Nek2 and NuMA were detected in both decondensing head, and the centriole of demembranated and decondensed sperm or whole body of trypsin-treated sperm for Nek2. During meiotic progress in oocytes, transcripts levels were the highest in MI stage and then downregulated in MII. Also, it shows dramatically change in early developmental embryos, firstly, it was increased until 4 cell stage and reduced in 8 cell stage, and finally, transcript levels were upregulated until blastoscyst. This finding suggests that cnetrosomal component may play an important role in reorganizing of functional centrosome during fertilization process and subsequent development.

  • PDF

Ultrastructural Study on Development of the Superior Cervical Ganglion of Human Fetuses (인태아 상경신경절 발육에 관한 전자현미경적 연구)

  • Kim, Dae-Young
    • The Korean Journal of Pain
    • /
    • v.11 no.1
    • /
    • pp.7-22
    • /
    • 1998
  • The development of the superior cervical ganglion was studied by electron microscopic method in human fetuses ranging from 40 mm to 260 mm of crown-rump length(10 to 30 weeks of gestational age). At 40 mm fetus, the superior cervical ganglion was composed of clusters of undifferentiated cell, primitive neuroblast, primitive supporting cell, and unmyelinated fibers. At 70 mm fetus, the neuroblasts and their processes were ensheated by the bodies or processes of satellite cells. The cytoplasm of the neuroblast contained rough endoplasmic reticulum, mitochondria, Golgi complex, Nissl bodies and dense-cored vesicles. As the neuroblasts grew and differentiated dense-cored vesicles moved away from perikaryal cytoplasm into developing processes. Synaptic contacts between the cholinergic axon and dendrites of postganglionic neuron and a few axosomatic synapses were first observed at 70 mm fetus. At 90 mm fetus the superior cervical ganglion consisted of neuroblasts, satellite cells, granule-containing cells, and unmyelinated nerve fibers. The ganglion cells increased somewhat in numbers and size by 150 mm fetus. Further differentiation resulted in the formation of young ganglion cells, whose cytoplasm was densely filled with cell organelles. During next prenatal stage up to 260 mm fetus, the cytoplasm of the ganglion cells contained except for large pigment granules, all intracytoplasmic structures which were also found in mature superior cervical ganglion. A great number of synaptic contact zones between the cholinergic preganglionic axon and the dendrites of the postganglionic neuron were observed and a few axosomatic synapses were also observed. Two morphological types of the granule-containing cells in the superior cervical ganglion were first identified at 90 mm fetus. Type I granule-containing cell occurred in solitary, whereas type II tended to appeared in clusters near the blood capillaries. Synaptic contacts were first found on the solitary granule-containing cell at 150 mm fetus. Synaptic contacts between the soma of type I granule-containing cells and preganglionic axon termials were observed. In addition, synaptic junctions between the processes of the granule-containing cells and dendrites of postganglionic neuron were also observed from 150 mm fetus onward. In conclusion, superior cervical ganglion cells and granule-containing cells arise from a common undifferentiated cell precursor of neural crest. The granule-containg cells exhibit a local modulatory feedback system in the superior cervical ganglion and may serve as interneurons between the preganglionic and postganglionic cells.

  • PDF

Fertilization and embryo quality of mature oocytes with specific morphological abnormalities

  • Yu, Eun Jeong;Ahn, Hyojeong;Lee, Jang Mi;Jee, Byung Chul;Kim, Seok Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.4
    • /
    • pp.156-162
    • /
    • 2015
  • Objective: To investigate fertilization and embryo quality of dysmorphic mature oocytes with specific morphological abnormalities obtained from intracytoplasmic sperm injection (ICSI). Methods: The fertilization rate (FR) and embryo quality were compared among 58 dysmorphic and 42 normal form oocytes (control 1) obtained from 35 consecutive ICSI cycles, each of which yielded at least one dysmorphic mature oocyte, performed over a period of 5 years. The FR and embryo quality of 441 normal form oocytes from another 119 ICSI cycles that did not involve dysmorphic oocytes served as control 2. Dysmorphic oocytes were classified as having a dark cytoplasm, cytoplasmic granularity, cytoplasmic vacuoles, refractile bodies in the cytoplasm, smooth endoplasmic reticulum in the cytoplasm, an oval shape, an abnormal zona pellucida, a large perivitelline space, debris in the perivitelline space, or an abnormal polar body (PB). Results: The overall FR was significantly lower in dysmorphic oocytes than in normal form oocytes in both the control 1 and control 2 groups. However, embryo quality in the dysmorphic oocyte group and the normal form oocyte groups at day 3 was similar. The FR and embryo quality were similar in the oocyte groups with a single abnormality and multiple abnormalities. Specific abnormalities related with a higher percentage of top-quality embryos were dark cytoplasm (66.7%), abnormal PB (50%), and cytoplasmic vacuoles (25%). Conclusion: The fertilization potential of dysmorphic oocytes in our study was lower, but their subsequent embryonic development and embryo quality was relatively good. We were able to define several specific abnormalities related with good or poor embryo quality.

Microstructural Differentiation of the Oocyte in the Abalone Haliotis discus hannai (북방전복(Haliotis discus hannai) 난모세포의 미세구조적 분화)

  • Kim, Hyejin;Kim, Hyeon Jin;Kim, Young Sook;Lee, Jung Sick
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.1
    • /
    • pp.90-97
    • /
    • 2020
  • The purpose of this study was to provide basic information on sexual maturity and reproductive biology for the management of biological resources in abalone Haliotis discus hannai. The nucleus of the oogonium occupied about 42% of the cytoplasm, and had a distinctive basophilic chromatin. The cytoplasm of previtellogenic oocytes was homogeneous and the size of nuclear pores increased. Fine granular and vacuolar yolk granules were observed in the cytoplasm of the initial vitellogenic oocyte. In this stage, the egg stalk and jelly membrane began to develop. The nucleus of the active vitellogenic oocyte was located near the animal pole. Yolk granules were strongly acidophilic. Lampbrush chromosomes were observed in the nucleus and rough endoplasmic reticulum. Annulate lamellae developed in the cytoplasm. The shape of the ripe oocyte was rounded polygonal. The size of ripe oocytes was 202.9±21.40×142.1±18.82 ㎛ and the thickness of the jelly membrane was 10.1±1.52 ㎛. These results show that yolk accumulation in H. discus hannai is based on two methods: exogenous accumulation, through the egg stalk, and endogenous accumulation, through intracellular organelles. Management of biological resources will be necessary when oocytes predominate after the active vitellogenic stage.

Initial Subcellular Responses of Susceptible and Resistant Soybeans Infected with the Soybean Cyst Nematode

  • Kim, Young Ho;Kim, Kyung Soo;Riggs, Robert D.
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.401-408
    • /
    • 2012
  • Initial subcellular responses in susceptible (PI 274420) and resistant (cv. Hartwig) soybeans infected with the soybean cyst nematode (SCN) were examined 2 and 4 days after inoculation (DAI). Subcellular features common to both soybeans at 2 DAI included hypertrophied initial syncytial cells (ISCs) and syncytium-component cells (SCs) with a dense cytoplasm containing proliferated rough and smooth endoplasmic reticulum (RER and SER), a hypertrophied nucleolus, and reduced vacuoles, suggesting that the nematode-infected cells were dedifferentiated. In the resistant soybean, a striking initial subcellular difference from the susceptible soybean was the dilation of the RER, indicating ER dysfunction and leading to cell death. This disturbed nematode feeding, as evidenced by disrupted feeding tubes. In PI 274420, the ISC cytoplasm was depleted, with the exception of ER membranes, at 4 DAI, while the SC cytoplasm was dense with proliferation of starch-containing plastids around multiple nuclei that might be derived from the congregation of nuclei in the neighboring SCs and in part by nuclear division without cytokinesis. In cv. Hartwig, syncytia were necrotized with secondary cell wall thickening outside the plasma membrane and an extremely dense cytoplasm containing a nucleus with an electron-lucent nucleolus, accompanied by the proliferation of closely stacked parallel RER and ribosomes. These results suggest that syncytia develop continuously in PI 274420 to produce and store nutritional substances in SCs, providing for the nematode through ISC until maturation, but in cv. Hartwig, syncytia degenerate early due to excessive metabolism, blocking nematode feeding and cytoplasmic connections with adjacent intact cells.