• Title/Summary/Keyword: cytogenetics

Search Result 119, Processing Time 0.026 seconds

Treatment and Survival in Patients with Chronic Myeloid Leukemia in a Chronic Phase in West Iran

  • Payandeh, Mehrdad;Sadeghi, Masoud;Sadeghi, Edris
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7555-7559
    • /
    • 2015
  • Background: CML includes 30% of all leukemias, and occurs from childhood to old age. The present study was a retrospective analysis of chronic phase CML patients registered to a Hematology Clinic in Kermanshah, Iran, with checking of treatment options. Materials and Methods: Between 2002 and 2014, 85 CML patients referred to our hematology clinic were enrolled in our study. We surveyed age, sex, B-symptoms, splenomegaly, Sokal score, Hasford score, treatment and survival in all patients. Philadelphia chromosome analysis was conducted for each patient by conventional cytogenetics. We compared treatment in the patients with three drugs, imatinib, hydroxyurea (HU) and interferon alpha (IFN-${\alpha}$). Results: The mean age of the patients at diagnosis was $47.5{\pm}14.5years$ (range, 23-82 years), with 43 (50.6%) being male. Some 13 (15.3%) were referred to our clinic for the first time with B-symptoms and 44 patients (51.8%) had splenomegaly. The Sokal score for 77 (90.6%) was low, 4 (4.7%) was intermediate and 4(4.7%) was high, but Hasford (Euro) scores for all patients were low. The 5-year survival rate for treated patients with imatinib, imatinib plus HU and imatinib plus HU plus IFN-${\alpha}$ was 90.5%, 81.1% and 55.6%, respectively Conclusions: The results show that imatinib therapy alone provides better survival in CML patients compared to HU or IFN-${\alpha}$. Combinations of IFN-${\alpha}$ and/or HU with imatinib probably reduce survival.

The Biocontrol Activity of Chromobacterium sp. Strain C-61 against Rhizoctonia solani Depends on the Productive Ability of Chitinase

  • Park, Seur-Kee;Lee, Myung-Chul;Harman, Gary E.
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.275-282
    • /
    • 2005
  • A chitinolytic bacterium, Chromobacterium sp. strain C-61, was found strongly antagonistic to Rhizoctonia solani, a causal agent of damping-off of eggplant. In this study, the biocontrol activity and enzymatic characteristics of strain C-61 were compared with its four Tn5 insertion mutants (C61-A, -B, -C, and -D) that had lower chitinolytic ability. The chitinase activity of a 2-day old culture was about $76\%,\;49\%\;and\;6\%$ level in C61-A, C61-B and in C61-C, respectively, compared with that of strain C-61. The $\beta-N-acetylhexosaminidase$(Nahase) activity was little detected in strain C-61 but increased largely in C-61A, C61-B and C61-C. Activities of chitinase and Nahase appeared to be negatively correlated in these strains. Another mutant, C-61D, produced no detectable extracellular chitinase and Nahase. The in vitro and in vivo biocontrol activities of strain C-61 and its mutants were closely related to their ability to produce chitinase but not Nahase. No significant differences in population densities between strain C-61 and its mutants were observed in soil around eggplant roots. The results of SDS-PAGE and isoelectrofocusing showed that a major chitinase of strain C-61 is 54-kDa with pI of approximately 8.5. This study provides evidence that the biocontrol activity of Chromobacterium sp. strain C-61 against Rhizoctonia solani depends on the ability to produce chitinase with molecular weight of 54-kDa and pI of 8.5.

Attenuation of p-dimethylaminoazobenzene initiated genotoxicity and cytotoxicity in mice by the combined treatment of a traditional homeopathic remedy Chelidonium Majus 200C and vitamin-C

  • Biswas, Surjyo Jyoti;Karmakar, Susanta Roy;Khuda-Bukhsh, Anisur Rahman
    • CELLMED
    • /
    • v.2 no.4
    • /
    • pp.35.1-35.11
    • /
    • 2012
  • The homeopathic remedy Chelidonium majus 200C (Chel-200) is traditionally used by homeopathic practitioners in liver ailments arising out of hepatotoxicity. The present investigation was aimed at examining whether vitamin C (L-ascorbic acid or AA), used in both traditional and orthodox medicines, can show better effects when used in combination with Chel-200, in favorably modifying the toxicological effects induced by the chronic feeding of p-dimethylaminoazobenzene (p-DAB, initiator) and phenobarbital (PB, promoter) in mice for 7 days through 120 days to induce hepatotoxicity and liver tumors. Mice were euthanized at 7, 15, 30, 60, 90, and 120 days of carcinogen feeding to assess various cytogenetical, biochemical and histological changes occurring in them. In a placebo controlled study, Chel-200 or the respective placebo (Alcohol-200C or Alc, "vehicle" of homeopathic drug), was orally administered to toxicant-fed mice. Sub-groups of the mice receiving Chel-200 were also fed either AA or an Alc placebo and their individual and conjoint effects were studied against the respective controls, to evaluate if the combination therapy of Chel-200 with AA can be of additional help in the amelioration of the toxicities generated by the toxicants. The combined feeding of Chel-200 and AA appeared to reduce the cytotoxic and genotoxic effects significantly, when compared to either only the Chel-200 or AA fed group. A similar trend was also obtained in the results of scanning and transmission electron microscopic studies of the livers. Experiments in other mammalian models are warranted to confirm if these drugs in combination could be used in palliative care of human patients with liver diseases including cancer.

COVID-19: an update on diagnostic and therapeutic approaches

  • Iyer, Mahalaxmi;Jayaramayya, Kaavya;Subramaniam, Mohana Devi;Lee, Soo Bin;Dayem, Ahmed Abdal;Cho, Ssang-Goo;Vellingiri, Balachandar
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.191-205
    • /
    • 2020
  • The unexpected pandemic set off by the novel coronavirus 2019 (COVID-19) has caused severe panic among people worldwide. COVID-19 has created havoc, and scientists and physicians are urged to test the efficiency and safety of drugs used to treat this disease. In such a pandemic situation, various steps have been taken by the government to control and prevent the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). This pandemic situation has forced scientists to rework strategies to combat infectious diseases through drugs, treatment, and control measures. COVID-19 treatment requires both limiting viral multiplication and neutralizing tissue damage induced by an inappropriate immune reaction. Currently, various diagnostic kits to test for COVID-19 are available, and repurposing therapeutics for COVID-19 has shown to be clinically effective. As the global demand for diagnostics and therapeutics continues to rise, it is essential to rapidly develop various algorithms to successfully identify and contain the virus. This review discusses the updates on specimens/samples, recent efficient diagnostics, and therapeutic approaches to control the disease and repurposed drugs mainly focusing on chloroquine/hydroxychloroquine and convalescent plasma (CP). More research is required for further understanding of the influence of diagnostics and therapeutic approaches to develop vaccines and drugs for COVID-19.

Detection of genetic abnormalities in human sperm, oocytes, and preimplantation embryos using fluorescence in situ hybridization (FISH) (Fluorescence in situ hybridization(FISH) 기법을 이용한 인간 생식세포 및 착상전 배아의 유전이상 검색)

  • 방명걸
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 1998.07a
    • /
    • pp.12-18
    • /
    • 1998
  • Tremendous progress has been made over the past quarter-century studying the genetics of gametogenesis and the resulting gametes and embryos. Studies merging molecular techniques and conventional cytogenetics are now beginning to bridge the gap between what we have learned about the meiotic process in males and females and what we know of the mitotic chromosomes of zygotes. Numerical abnormalities in sperm, oocytes and embryo can now diagnosed by fluorescence in situ hybridization (FISH). "At risk" couples can, therefore, have only unaffected embryos replaced in the sterus and avoid the possibility of terminating a pregnancy that might only be diagnosed as affected later gestation. Single-cell genetic analysis has also provided powerful tools for studying genetic defects arising during early human development. Recent studies of sperms, oocytes and cleavage-stage human embryos have revealed an unexpectedly high incidence. These genetic abnormalities are likely to contribute to early pregnancy loss and have important implications for improving pregnancy rates in infertile couples by assisted reproduction. The widespread use of preimplantation genetic diagnosis (PGD) awaits further documentatio of safety and accuracy. Other issues also must be addressed. First, the ethical issues regarding germ cell and embryo screening must be addressed including what diseases are serious enough to warrant the procedure. Another concern is the use of this technology for non-genetic disorders such as gender selection. Finally, the experimental nature of these procedure must continually be discussed with patients, and long-term follow-up studies must be undertaken. Development of more accurate and less expensive assays coupled with improved assisted reproductive technology success rates may make PGD a more widely use clinical tool. The future awaits these development.velopment.

  • PDF

Image Analysis Algorithms for Comparative Genomic Hybridization (분자 세포 유전학 기법에 응용되는 영상 처리 기술)

  • Kim, De-Sok;Yoo, Jin-Sung;Lee, Jin-Woo;Kim, Jong-Won;Moon, Shin-Yong;Choi, Young-Min
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.66-69
    • /
    • 1998
  • Comparative genomic hybridization (CGH) is an important molecular cytogenetics technique that maps abnormal copy number of specific DNA sequence of the chromosome. CGH is based on quantitative digital image analysis of ratio images from fluorescently labeled chromosomes. In this paper, we would like to introduce how recently developed image analysis algorithms are used for CGH techniques. To average the ratio profile of each chromosome, binarization, skeletonization, and stretching of chromosome images have been studied. Developed algorithms have been implemented in the karyotyping system ChIPS commercially developed at Biomedlab Co. Ltd.

  • PDF

The Implementation of Hierarchical Artificial Neural Network Classifier for Chromosome Karyotype Classification (염색체 핵형 분류를 위한 계층적 인공 신경회로망 분류기 구현)

  • Jeon, Gye-Rok;Choe, Uk-Hwan;Nam, Gi-Gon;Eom, Sang-Hui;Lee, Gwon-Sun;Jang, Yong-Hun
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.233-241
    • /
    • 1997
  • The research on chromosomes is very significant in cytogenetics since genes of the chromosomes control revelation of the inheritance plasma. The human chromosome analysis is widely used to study leukemia, malignancy, radiation hazard, and mutagen dosimetry as well as various congenital anomalies such as Down's, Klinefelter's, Edward's, and Patau's syndrome. The framing and analysis of the chromosome karyogram, which requires specific cytogenetic knowledge is most important in this field. Many researches on automated chromosome karyotype analysis methods have been carried out, some of which produced commercial systems. However, there still remains much room to improve the accuracy of chromosome classification and to reduce the processing time in real clinic environments. In this paper, we proposed a hierarchical artificial neural network(HANN) to classify the chromosome karyotype. We extracted three or four chromosome morphological feature parameters such as centromeric index, relative length ratio, relative area ratio, and chromosome length by preprocessing from ten human chromosome images. The feature parameters of five human chromosome images were used to learn HANN and the rest of them were used to classify the chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other researchers using less feature parameters.

  • PDF

Challenges of Genome Wide Sequencing Technologies in Prenatal Medicine (산전 진단에서의 염기 서열 분석 방법의 의의)

  • Kang, Ji-Un
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.762-769
    • /
    • 2022
  • Genetic testing in prenatal diagnosis is a precious tool providing valuable information in clinical management and parental decision-making. For the last year, cytogenetic testing methods, such as G-banding karyotype analysis, fluorescent in situ hybridization, chromosomal microarray, and gene panels have evolved to become part of routine laboratory testing. However, the limitations of each of these methods demonstrate the need for a revolutionary technology that can alleviate the need for multiple technologies. The recent introduction of new genomic technologies based on next-generation sequencing has changed the current practice of prenatal testing. The promise of these innovations lies in the fast and cost-effective generation of genome-scale sequence data with exquisite resolution and accuracy for prenatal diagnosis. Here, we review the current state of sequencing-based pediatric diagnostics, associated challenges, as well as future prospects.

Fluorescence and Heating Giemsa Staining Studies of Human Chromosomes (人類染色體硏究에 있어서의 螢光染色法과 分染法)

  • Kang, Yung Sun
    • The Korean Journal of Zoology
    • /
    • v.15 no.4
    • /
    • pp.214-224
    • /
    • 1972
  • 작년 9월 2$\\sim$4일에 프랑스, 파리에서 사람의 染色體에 관한 國際會議(The Standardization Conference on Human Cytogenetics)가 열렸는데, 이것은 Denver, Londan 및 Chicago 會議(1960, 1963, 1966)에 계속해서 개최된 4번째 會議가 된다. 계속해서 이틀후인 9월 6일부터 1주일간 같은 장소인 파리에서 4차 國際人類遺傳學會가 개최되었다. 이들 양 會議에서 사람의 染色體에서 밴드 구조를 얻을 수 있는 特殊染色法과 그에 따른 染色體의 새로운 同定과 命名法이 화제의 중심이 되었던 것이다. 이 사람은 다행히 이들 회의에 참석할 기회를 얻어 이 문제를 토의하는 회합에 참석했기에 여기 간단히 그 문제를 해설해볼까 한다. 1956년 Tjio 및 Leven이 사람의 染色體의 정확한 수를 확인했고, 그 뒤 Denver 및 London 國際會議를 거쳐서 사람 染色體의 同定과 命名에 관한 國際的인 規約이 정해지기는 했지만, 23쌍의 사람의 染色體 하나 하나를 정확히 구분하기란 어려운 일로되었다. 종래의 방법으로 얻어진 사람의 染色體를 顯微鏡 밑에 色體 1쌍(X-Y, X-X)으로 구분을 하지만 실제로 확신을 갖일 수 있는 것은 常染色體에서 6쌍과 Y染色體만이였다. 다음 1960년대에 染色體 연구에 널리 이용되어온 오토래디오그리피(Autoradiography)는 DNA 複製의 시간적인 차이를 통해 染色體 固定에 큰 도움을 주었지만 실제로 정확한 식별이 가능케 한 것은 常染色體쌍 5과 여성의 X染色體 1개만 이라고 하겠다. 이렇게 생각한다면 남어지 11쌍의 常染色體와 1개의 X染色體는 1970년에 이르기까지 정확한 同定은 불가능했다고 말할 수 있다. 그러나 1970년을 전후해서 이문제에 관한 정세는 일변했으며, 여러 가지 特殊染色法이 개발되어 사람의 染色體 하나 하나를 정확히 식별 할 수 있는 단계에 접어들게 되었다. 그중에서도 식별 할 수 있는 단계에 접어들게 되었다. 그중에서도 대표적인 것이 키나크린 螢光染色法(quinacrine fluorescence staining method)와 김자分染法(heat-giemsa staining method)이며 이들 방법을 통하면 染色體의 縱軸에 따라 특유한 明暗의 밴드 패턴(banding patterns)이 나타나게 되어, 사람만이 아니라 고등한 동물의 모든 染色體가 쉽게 同定이 된다는 것이다.

  • PDF

Utility of Real Time RT-PCR for the Quantitative Detection of Minimal Residual Disease in Hematological Malignancy (백혈병 미세잔존질환 정량검출을 위한 실시간 역전사중합효소연쇄반응법의 유용성)

  • Cho, Jeung-Ai;Kim, Da-Woon;Jeong, Seong-Du;Cheon, Ji-Seon;Na, Gyeong-Ah;Kim, Hye-Ran;Kim, Jin-Gak;Kim, In-Hwan;Kim, Soo-Hyun;Shin, Myung-Geun;Kim, Hyeong-Rok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.1
    • /
    • pp.11-23
    • /
    • 2009
  • Chromosomal rearrangements are major pathology in hematological malignancies. The detection of minimal residual disease (MRD) for these gene rearrangements helps in monitoring treatment outcomes and predicting prognosis of patients. Recently, quantification of these gene transcripts based on real-time quantitative polymerase chain reaction (RQ-PCR) has been used as MRD detection. The purpose of this study is to ensure the usefulness of the RQ-PCR technique for detecting MRD in hamatological malignancy patients. The patients had been diagnosed to AML1-ETO positive AML, PML-RARa positive AML and BCR-ABL positive MPN at Chonnam National University Hwasun Hospital from Jan. 2006 to Aug. 2008. The fusion transcript was quntified by RQ-PCR and analyzed in comparison to conventional cytogenetics, FISH and RT-PCR. The fusion gene transcript was quantified by RQ-PCR in 57 samples from 14 patients with AML1-ETO positive AML, 79 samples from 27 patients with PML-RARa positive AML and 108 samples from 36 patients with CML. At diagnosis, the quantitative fusion transcripts for AM1-ETO, PML-RARa and BCR-ABL showed the range of 0.485552651~10.82233683 (mean 3.782217131, SD 2.998052348), 0.005300395~0.29267494 (mean 0.056901315, SD 0.080131381) and 0.1293929~12.94826849 (mean 1.701935665, SD 2.200913158). The increase of AML1-ETO fusion gene transcripts preceded morphologic relapse in two patients. Quantification of fusion gene transcripts by RQ-PCR could detected MRD in samples which were negative by in cytogenetic analysis or FISH. Our findings indicated that quantitative analysis of AML1-ETO, PML-RARa and BCR-ABL transcripts by RQ-PCR might be a useful tool for the monitoring of minimal residual disease in hematological malignancies.

  • PDF