• Title/Summary/Keyword: cytochrome P450 hydroxylase

Search Result 122, Processing Time 0.017 seconds

A study on the Effects of Rehmannia Radix and Eukmigihwangtang (EMGHT) on Antioxidation Activity in Aging Rats (숙지황(熟地黃)과 육미지황탕(六味地黃湯)이 노화과정(老化過程) 흰쥐에서의 항산화(抗酸化) 기전(機轉)에 미치는 영향(影響))

  • Ahn, Sang-Won;Lee, Cheol-wan
    • Journal of Haehwa Medicine
    • /
    • v.8 no.1
    • /
    • pp.593-623
    • /
    • 1999
  • This experimental study was designed to verify the anti-aging efficacy of Eukmigihwangtang (EMGHT) and Rehmannia Radix, and determine the specific role and actions of Rehmannia Radix. Normal rat (2 months old), aging rat (8 months old), and pathologically induced rat (2 months old, injected 30mg/kg of streptozotocin) are observed to study the aging eliciting factors such as peroxide contents and enzyme activities. The following results were obtained in this study: 1. For the body weight changes, normal group given Rehmannia Radix showed decrease in the body weight compared to the control group, aging group given EMGHT and Rehmannia Radix showed significant decrease in the body weight, and STZ injected group showed suppression to the body weight loss when given EMGHT and Rehmannia Radix. 2. For the content changes in serum lipid peroxide, normal group showed increasing level as the rat gets older. Aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant decrease in the lipid peroxide level compared to the control group. Decrease was more prominant in the group given EMGHT. 3. For the changes in serum hydroxyl radical, normal group did not show significant changes, but aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant decrease in the hydroxyl radical level compared to the control group. Decrease was more prominant in the group given EMGHT. 4. For the changes in serum superoxide dismutase (SOD) activity, normal group did not show significant changes, but aging group given EMGHT and Rehmannia Radix showed significant increase in the SOD activity compared to the control group. STZ injected group given EMGHT and Rehmannia Radix showed significant decrease in the SOD activity compared to the control group. 5. For the content changes in hepatic lipid peroxide, aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant decrease in the lipid peroxide level compared to the control group. 6. For the changes in hepatic cytochrome P-450 activity, aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant decrease compared to the control group. Cytochrome b5 activity was significantly decreased only in the STZ injected group given EMGHT and Rehmannia Radix. 7. For the changes in hepatic aminopyrine demethylase and aniline hydroxylase activity, aging group given EMGHT and Rehmannia Radix showed significant decrease compared to the control group. STZ injected group given EMGHT and Rehmannia Radix showed significant increase in the aminopyrine demethylase activity, and showed significant decrease in the aniline hydroxylase activity compared to the control group. 8. For the content changes in hepatic protein bound-SH and nonprotein bound-SH, againg group and STZ injected group given EMGHT and Rehmannia Radix showed significant increase compared to the control group. 9. For the content changes in hepatic glutathione level, aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant increase compared to the control group. 10. For the changes in hepatic glutathione S-transferase activity, aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant increase and decrease, respectively, compared to the control group. 11. For the changes in hepatic glutathione reductase activity, aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant increase compared to the control group, while $\gamma$-Glutamylcystein synthetase activity did not show significant changes. 12. For the changes in hepatic superoxide dismutase activity, aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant decrease compared to the control group. From the above results, the antioxidant effects of EMGHT and Rehmannia Radix were proved, as well as the role of Rehmannia Radix, a chief of EMGHT, was examined. In addition, since no change was reconized as the quantity of Rehmannia Radix and the order herbs increased, the reasonableness on EMGHT was proven with respect to its composition and quantity. Thus, the significance of EMGHT could be objectively exmined in terms of its composition and quantity. Considering animals used in the experiment, there were obvious changes in aging rats and pathologically induced rats than in normal rats. Consequently, it was noticeable that EMGHT and Rehmannia Radix were working selectively on the subjects.

  • PDF

Effect of Lead Acetate on Pancreatico-biliary Secretion (납(Lead)이 취외분비 기능에 미치는 영향)

  • Sheen, Yhun-Yhong;Kim, Won-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.17 no.1 s.28
    • /
    • pp.17-25
    • /
    • 1981
  • No evidence has accumulated that lead compound is an essential component for biological function in animals. Lead is absorbed primarily through the epithelial mucosal cells in duodenum and the absorption can be enhanced by the substances which bind lead and increase its solubility. Iron, zinc and calcium ions, however, decrease the absorption of lead without affecting its solubility, probably by competing for shared absorptive receptors in the intestinal mucosa. Therefore, the absorption of lead is increased in iron deficient animals. Lead shows a strong affinity for ligands such as phosphate, cysteinyl and histidyl side chains of proteins, pterins and porphyrins. Hence lead can act on various active sites of enzymes, inhibiting the enzymes which has functional sulfhydryl groups. lead inhibits the activity of ${\delta}$-aminolevulinic acid dehydratase for the biosynthesis of hemoproteins and cytochrome, which catalyzed the synthesis of monopyrrole prophobilinogen from ${\delta}$-aminolevulinic acid. Accordingly lead decrease hepatic cytochrome p-450 content, resulting an inhibition of the activity of demethylase and hydroxylase in liver. Little informations are available on the effect of lead on digestive system although the catastrophic effects of lead intoxication are well documented. The present study was, therefore, attempted to investigate the effect of lead on pancreaticobiliary secretion in rats. Albino rats of both sexes weighing $170{\sim}230g$ were used for this study. The animals were divided into one control and three treated groups, i.e., control (physiologic saline 1.5ml/kg i.p.), lead acetate $(l0{\mu}mole/kg/day\;i.p.)$, $Pb(Ac)_2$ and EDTA$(each\;10{\mu}mole/kg/day\;i.p.)$, $Pb(Ac)_2$ and $FeSO_4(each\;l0{\mu}mole/kg/day\;hp)$. The pancreatico-biliary juice was collected under urethane anesthesia, and activities of amylase and lipase were determined by employing Sumner's and Cherry and Crandall's methods. The summarized results are follows. 1) In the experiment for acute toxicity of lead acetate, 20% of mortality was observed in rat treated with lead acetate as well as inhibition of the activity of amylase in the juice at the 3 rd day of the treatment. 2) No increases in body weight were observed in rats treated with lead acetate, while in control group the significant increases were observed. However, the body weights of animals were increased in the group lead acetate plus EDTA or $FeSO_4$. 3) Lead acetate decreased significantly the volume of pancreatico-biliary juice whereas additional treatment of EDTA and $FeSO_4$ prevented it. 4) Total activity of amylase was markedly reduced due to lead acetate treatment, but no change was showed following additional treatment with EDTA and $FeSO_4$. 5) No changes in the cholate and lipase output were observed in rats treated with lead acetate as compared with that of control rats. 6) Increase in bilirubin output in rats treated with lead acetate was shown on the 2nd and 3rd weeks treatment. 7) In the case of in vitro experiment, lead acetate also markedly inhibited release of amylase from pancreatic fragment. 8) Histologic finding indicated that acini vacuolation was induced in the pancreatic tissue of rat treated with lead acete. From the above results, it might be concluded that lead acetate decreases the volume of pancreatico-biliary secretion and inhibits the amylase activity, by acting directly on pancreatic cells.

  • PDF