• Title/Summary/Keyword: cysteine desulfhydrase

Search Result 6, Processing Time 0.023 seconds

Purification and Charactedrization of Cysteine Desulfhydrase from Streptomyces albidoflavus SMF301

  • Ryu, Jae-Gon;Kang, Sung-Gyun;Kim, In-Seop;Rho, Young-Taik;Lee, Sang-Hee;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.97-102
    • /
    • 1997
  • Cysteine desulfhydrase (EC 4.4.1.1.) was purified from the culture supernatant of Streptomyces albidoflavus SMF301 by hydroxyapatite, gel filtration and Resource Q ion-exchange chromatography with a purification fold of six identical subunits. The enzyme was stabilized by dithiothreitol and pyridoxal 5'-phosphate during the purification procedures. The optimum pH and temperature were pH 8.6 and 35$^{\circ}C$, respectively. The N-terminal amino acid sequence was identified as A-P-L-P-T-A-D-V-R-S-D-P-G-Y-R-E-W-L-G-E-A-V. The purified cystein desulfhydrase had a high substrate specificity toward cysteine, and exhibited no cystahionine $\gamma$-lyase activity. The $K_m$ value for cysteine was determined to be 0.37 mM.

  • PDF

Effect of Dietary Protein and Taurine on Cysteine Catabolism in Cat Liver (식이내의 단백질과 타우린 함량이 Cysteine 대사에 미치는 영향)

  • 박태선
    • Journal of Nutrition and Health
    • /
    • v.29 no.7
    • /
    • pp.729-737
    • /
    • 1996
  • Activieties of hepatic cysteine desulfhydration was assessed in cats fed one of the following diets for 5 weeks : 20% protein, 0% taurine diet(LPOT) ; 20% protein, 0.15% taurine diet (LPNT) ; 60% protein, 0% taurine diet(HPOT) ; and 60% protein, 0.15% taurine diet(HPNT). Cats fed LPOT and HPOT had been maintained on a taurine-free diet for 6 weeks prior to the experiment in order to deplete body taurine. Activities of cysteine desulfhydration were determined by measuring the production of H235S from 35S-cysteine in the presence and absence of $\alpha$-ketoglutarate ($\alpha$-KG) in the incubation medium. The direct pathway via cysteine desulfhydrase appears to account for the major route of cysteine desulfhydration in the cat liver since the values obtained in the absence of $\alpha$-KG were between 81 and 88% of those obtained in the presence of $\alpha$-KG. Mean$\pm$SEM of the hepatic total desulfhydration activities(umol H2S.min-1.kg body wt-1)in cats fed LPOT, LPNT, HPOT and HPNT were 117$\pm$6, 135$\pm$10, 137$\pm$10, and 190$\pm$9, respectively. The capacity of hepatic cysteine desulfhydration (UA/kg body wt) was positively cerrelated not only with the dietary concentration of taurine but also with the concentration of protein.

  • PDF

L-Cysteine Metabolism and the Effects on Mycelium growth of Streptomyces albidoflavus SMF301 in Submerged Culture

  • Lee, Kye-Joon;Kim, Jong-Woong;Kang, Sung-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.159-164
    • /
    • 1994
  • Myceliuml growth and spore formation of Streptomyces albidoflavus SMF301 in submerged culture were compared with the metabolism of cysteine. Cysteine added to the culture was metabolized by cysteine desulfhydrase (EC 4.4.1.1.) to produce ammonium ions, hydrogen sulfide, and pyruvate. The redox potential of the culture broth was lowered immediately as the result of the metabolism of cysteine, which caused a lag period of mycelium growth. However enhanced activities of pyruvate dehydrogenase and a-ketoglutarate dehydrogenase were confirmed in the culture containing cysteine, indicating that pyruvate was utilized to support further mycelium growth.

  • PDF

Analysis of the Reaction Steps in the Bioconversion of D,L-ATC to L-Cysteine

  • Ryu, Ok-Hee;Shin, Chul-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.50-53
    • /
    • 1991
  • The reaction steps involved in the bioconversion of a chemically synthesized precursor, $D,L-2-amino-{\Delta}^2-thiazoline-4-carboxylic$ acid (D,L-ATC), to L-cysteine and the properties of the involved enzymes were investigated. It was found that the conversion consisted of two steps, i. e., D,L-ATC to S-carbamyl-L-cysteine (S-C-L-cysteine) and S-C-L-cysteine to L-cysteine, and the S-C-L-cysteine was an intermediate between them. While the enzymes involved in the reactions were induced by the addition of D,L-ATC as an inducer, S-C-L-cysteine induced only the enzyme involved in the latter step. The conversion of S-C-L-cysteine to L-cysteine could be also carried out in the presence of hydroxylamine and its rate was much faster than that by the corresponding enzyme. On the other hand, L-cysteine (or L-cystine) was decomposed to evolve $H_2S$ by the enzyme considered to be a kind of desulfhydrase. However, hydroxylamine was a perfect inhibitor for this enzyme.

  • PDF

Studies on Cysteine desulfhydrase Produced by Bacteria(Part II) Enzymatic Preparation of L-Cysteine Derivatives by Cysteinedesulfhydrase from Aerobacter aerogenes. (Bacteria가 생산하는 Cysteinedesulfhydrase에 관한 연구(제이보) L-Cysteine 유도체의 효소적 합성에 관하여)

  • 최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 1974
  • 1 With cysteinedesulfhydrase (E. C.4.4.1.1.) from Aerobactor aerogenes, an enzyme which catalyzes the stoichiometric conversion of L-cysteine to pyruvate, ammonia and sulfide, reversibility of the degradation of L-cysteine was investigated. It was found that the enzyme also catalized the reverse reaction of $\alpha$, $\beta$-elimination to synthesize L-cysteine derivatives from pyruvate, ammonia and sulfides when large amounts of substrates were added to the reaction mixtures. 2. The synthetic reaction by cysteinedesulfhydrase proceeded linearly with incubation time and enzyme concentrations. The optimal pH for the synthetic reaction was 10.0. 3. The results of the isolation and identification of the products showed that the L-cysteine derivatives synthesized by this enzymatic method were identical with S-methyl-L-cysteine and S-ethyl-L-cysteine respectively.

  • PDF

Bioconversion of D,L-ATC to L-cysteine Using Whole Cells (D,L-ATC의 L-cysteine으로의 생물학적 전환반응에서의 균체이용 기술)

  • 윤현숙;류옥희;신철수
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.681-686
    • /
    • 1992
  • In the conversion of D.L-2-amino-$\Delta^2$-thiazoline-4-carboxylic acid(D,L-ATC) to L-cysteine using Pseudomonas sp. CU6. the effects of surfactants on whole cells and the stabilities of cellfree enzyme solution and continuous reactor packed with immobilized whole cells were investigated. The enzymatic reaction was little accomplished by whole cells without adding surfactants, whereas it was well carried out with SDS or Triton X-loo comparable to the case using cell-free enzyme solution. Enzyme activity of the cell-free solution was lost by 50% after 7 hours of storage at $30^{\circ}C$, but not at all under an anaerobic condition by sparging nitrogen gas. On the other hand. effect of nitrogen gas did not appear in a continuous reactor using immobilized whole cells, and hydroxylamine, an inhibitor of L-cysteine desulfhydrase, lowered the enzyme stability.

  • PDF