• Title/Summary/Keyword: cyp1a1

Search Result 669, Processing Time 0.033 seconds

Modulation of Biotransformation Enzymes by Phytochemicals: Impact of Genotypes

  • Lampe Johanna W.
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.65-70
    • /
    • 2004
  • Modulation of biotransformation enzymes is one mechanism by which a diet high in fruits and vegetable may influence cancer risk. Inhibition of cytochrome P450s (CYP) and concomitant induction of conjugating enzymes are hypothesized to reduce the impact of carcinogens in humans. Thus, exposure to types and amounts of phytochemicals may influence disease risk. Like other xenobiotics, many classes of phytochemicals are rapodly conjugated with glutathione, glucuronide, and sulfate moieties and excreted in urine and bile. In humans, circulating phytochemical levels very widely among individuals even in response to controlled dietary interventions. Polymorphisms in biotransformation enzymes, such as the glutathione S-transferases (GST), UDP-glucuronosyltransferases (UGT), and sulfotransferases (SULT), may ocntribute to the variability in phytochemical clearance and efficacy; polymorphic enzymes with lower enzyme activity prolong the half-lives of phytochmicals in vivo. Isothiocyanates (ITC) in cruciferous vegetables are catalyzed by the four major human GSTs: however reaction velocities of the enzymes differ greatly. In some observational studies of cancer, polymorphisms in the GSTMI and GSTTI genes that result in complete lack of GSTM1-1 protein, respectively, confer greater protection from cruciferous vegetable in individuals with these genotypes. Similarly, we have shown in a controlled dietary trial that levels of GST-alpha-induced by ITC-are higher in GSTMI-null individuals exposed to cruciferous vegetablse. The selectivity of glucuronosyl conjugation of flavonoids is dependent both on flavonoid structure as well as on the UGI isozyme involved in its conjuagtion. The effects of UGI polymorphisms on flavonoid clearnace have not been examind; but polymorphisms affect glucuronidation of several drugs. Given the strong interest in the chemopreventive effects of flavonoids, systematic evaluation of these polymorphic UGTs and flavonoid pharmacokinetics are warranted. Overall, these studies suggest that for phytochemicals that are metabolized by, and affect activity of, biotransformation enzymes, interactions between genetic polymorphisms in the enzymes and intake of the compounds should be considered in studies of cancer risk. Genetic polymorphisms in biotransformation enzymes may account in prat for individual variation in metabolism of a wide range of phytochemicals and their ultimate impact on health.

  • PDF

Tumorigenic Effects of 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin in Normal Human Skin and Lung Fibroblasts (사람의 정상 피부세포 및 폐세포의 발암에 미치는 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin의 영향)

  • Kang, Mi-Kyung;Ryeom, Tai-Kyung;Kim, Kang-Ryune;Kim, Ok-Hee;Kang, Ho-Il
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.3
    • /
    • pp.77-85
    • /
    • 2006
  • 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin(TCDD) displays high toxicity in animals and has been implicated in human carcinogenesis. Although TCDD is recognized as potent carcinogens, relatively little is known about their role in the tumor promotion and carcinogenesis. It is known that TCDD can increase of cancer risk from various types of tissue by a mechanism possibly involving the aryl hydrocarbon receptor (AhR) activation. In this study, effects of TCDD on cellular proliferation of normal human skin and lung fibroblasts, Detroit551 and WI38 cells were investigated. In addition, to enhance our understanding of TCDD-mediated carcinogenesis, we have investigated process in which expression of Erk1/2, cyclinD1, oncogene such as Ha-ras and c-myc, and their cognate signaling pathway. TCDD that are potent activators of AhR-mediated activity was found to induce significant increase of cytochrome P4501A1 mRNA expression, suggesting a presence of functional AhR. These results support that CYP1A1 enzyme may be involved in the generation of TCDD-induced toxicity. Moreover mitogen-activated protein kinases (MARKs) phosphorylation and cyclin D1 overexpression are induced by TCDD, which corresponded with the progression of cellular proliferation. However, TCDD did not affected Ha-ras and c-myc mRNA expression. Taken together, it seems that TCDD are could be a part of cellular proliferation in non-tumorigenic normal human cells such as Detroit551 and WI38 cells through the upregulation of MAPKs signaling pathway regulating growth of cell population. Therefore, AhR-activating TCDD could potentially contribute to tumor promotion and Detroit551 and WI38 cells have been used as a detection system of tumorigenic effects of TCDD.

  • PDF

Selection and evaluation of reference genes for gene expression using quantitative real-time PCR in Mythimna separata walker (Lepidoptera: Noctuidae)

  • ZHANG, Bai-Zhong;LIU, Jun-Jie;CHEN, Xi-Ling;YUAN, Guo-Hui
    • Entomological Research
    • /
    • v.48 no.5
    • /
    • pp.390-399
    • /
    • 2018
  • In order to precisely assess gene expression levels, the suitable internal reference genes must be served to quantify real-time reverse transcription polymerase chain reaction (RT-qPCR) data. For armyworm, Mythimna separata, which reference genes are suitable for assessing the level of transcriptional expression of target genes have yet to be explored. In this study, eight common reference genes, including ${\beta}$-actin (${\beta}$-ACT), 18 s ribosomal (18S), 28S ribosomal (28S), glyceraldehyde-3-phosphate (GAPDH), elongation fator-alpha ($EF1{\alpha}$), TATA box binding protein (TBP), ribosomal protein L7 (RPL7), and alpha-tubulin (${\alpha}$-TUB) that in different developmental stages, tissues and insecticide treatments of M. separata were evaluated. To further explore whether these genes were suitable to serve as endogenous controls, three software-based approaches (geNorm, BestKeeper, and NormFinder), the delta Ct method, and one web-based comprehensive tool (RefFinder) were employed to analyze and rank the tested genes. The optimal number of reference genes was determined using the geNorm program, and the suitability of particular reference genes was empirically validated according to normalized HSP70, and MsepCYP321A10 gene expression data. We found that the most suitable reference genes for the different experimental conditions. For developmental stages, 28S/RPL7 were the optimal reference genes, both $RPL7/EF1{\alpha}$ were suitable for experiments of different tissues, whereas for insecticide treatments, $28S/{\alpha}-TUB$ were suitable for normalizations of expression data. In addition, $28S/{\alpha}-TUB$ were the suitable reference genes because they have the most stable expression among different developmental stages, tissues and insecticide treatments. Our work is the first report on reference gene selection in M. separata, and might serve as a precedent for future gene expression studies.

Effect of Glutathione S-Transferase Polymorphisms on the Antioxidant System (Glutathione S-Transferase 유전적 다형성이 항산화 체계에 미치는 영향)

  • Jeon, Gyeong-Im;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.6
    • /
    • pp.708-719
    • /
    • 2007
  • Glutathione S-transferase genotypes GSTT1, GSTM1 and GSTP1 were characterized in 104 healthy male and female subjects and compared with parameters of oxidative stress at the level of DNA and lipids, with antioxidant enzymes, and with plasma antioxidants in smokers and non.smokers. Of the 104 subjects studied, 57.4% were GSTT1 present and 47.6% were GSTM1 present. The GSTP1 polymorphisms a and b were represented as follows: a/a, 75.5%; a/b, 21.6%; b/b type, 2.9%. The GSTT1 null genotype was associated with decreased glutathione in erythrocytes and elevated lymphocytes DNA damage. GST-Px was higher in GSTT1 null compared with GSTT1 present type. The homozygous GSTP1 genotype was not associated with any antioxidant status or DNA damage. The difference in plasma ${\alpha}$-carotene and erythrocytes GSH-Px and GST activities between smokers and non-smokers was detected in the GSTT1 null genotype. Plasma ${\gamma}$-tocopherol and ${\beta}$-carotene decreased significantly in smokers having GSTM1 null genotype. When GSTT1 and GSTM1 were combined, plasma lycopene and erythrocyte GST were reduced in smokers in both null types of these genes. As for GSTP1 genotype, plasma ${\alpha}$-carotene and erythrocytes GSH-Px decreased significantly in smokers with GSTP1 b/b, while erythrocytes GSH-Px activities decreased in smokers with GSTP1 a/b. The different ${\beta}$-carotene level between smokers and non-smokers was seen with both GSTP1 a/a and a/b genotype. It seems that polymorphisms in the phase II metabolizing enzyme glutathione S-transferase may be important determinants of commonly measured biomarkers.

Enhanced Purification of Recombinant Rat NADPH-P450 Reductase by Using a Hexahistidine-Tag

  • Park, Hyoung-Goo;Lim, Young-Ran;Han, Songhee;Jeong, Dabin;Kim, Donghak
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.983-989
    • /
    • 2017
  • NADPH-P450 reductase (NPR) transfers electrons from NADPH to cytochrome P450 and heme oxygenase enzymes to support their catalytic activities. This protein is localized within the endoplasmic reticulum membrane and utilizes FMN, FAD, and NADPH as cofactors. Although NPR is essential toward enabling the biochemical and pharmacological analyses of P450 enzymes, its production as a recombinant purified protein requires a series of tedious efforts and a high cost due to the use of $NADP^+$ in the affinity chromatography process. In the present study, the rat NPR clone containing a $6{\times}$ Histidine-tag (NPR-His) was constructed and heterologously expressed. The NPR-His protein was purified using $Ni^{2+}$-affinity chromatography, and its functional features were characterized. A single band at 78 kDa was observed from SDS-PAGE and the purified protein displayed a maximum absorbance at 455 nm, indicating the presence of an oxidized flavin cofactor. Cytochrome c and nitroblue tetrazolium were reduced by purified NPR-His in an NADPH-dependent manner. The purified NPR-His successfully supported the catalytic activities of human P450 1A2 and 2A6 and fungal CYP52A21, yielding results similar to those obtained using conventional purified rat reductase. This study will facilitate the use of recombinant NPR-His protein in the various fields of P450 research.

Dosage Adjustment before and after Warfarin - Rifampin Combination Therapy (와파린-리팜핀 병용 시 용량 조절)

  • Kim, Dong-Hyun;Kim, Kyung-Hwan;Choi, Kyung-Hee;Lee, Kwang-Ja;Lee, Hye-Suk;Son, In-Ja;Kim, Ki-Bong;Lee, Jae-Woong;Ahn, Hyuk
    • Journal of Chest Surgery
    • /
    • v.41 no.3
    • /
    • pp.354-359
    • /
    • 2008
  • Background: Warfarin is used as an anticoagulant and it is mainly excreted by the liver metabolism (the R-form is mainly metabolized by cytochrome p450 3A4, and the S form by cytochrome p450 2C9). Rifampin is usually used for tuberculosis or endocarditis, and it is a representative drug that induces the CYP families, including 3A4 and 2C9. The anticoagulation effect of warfarin decreases through the increased metabolism that's due to the induction of enzymes, and this iscaused by rifampin when patients take these two medicines together. No one has suggested appropriate guidelines regarding this drug interaction even though an appropriate adjustment of warfarin's dosage is needed. We examined the drug interaction in patients who received warfarin-rifampin combination therapy according to the time interval, and the factors affecting drug interaction were analyzed. Based on the data, we tried to determine the clinically available warfarin dosage guidelines before and after taking this drug combination. Material and Method: We reviewed the OO University Hospital anticoagulation service team's follow up sheets that were filled out from Jan '1998 to Sep 2006 for the patient who took warfarin - rifampin combination therapy (n=15). Result: The average INR of all the patient before rifampin administration was $2.25{\pm}0.52$ $(mean{\pm}SD)$, and that value for the first 100 days after rifampin administration was $1.98{\pm}0.28$. The p value for these two sets of data showed no correlation (paired t-test, p>0.05). The average INR of all the patient before rifampin cessation was $2.19{\pm}0.34$, and the value after rifampin cessation was $2.49{\pm}0.43$. The p value of these two showed correlation (paired t-test, p<0.05) but the average INR falls between the therapeutic INR range. Conclusion: The warfarin dose adjustment equation of before and after warfarin-rifampin combination therapy was derived based on this study's results because the warfarin dosage adjustment of the anticoagulation service team was considered appropriate.

Surface Display of Heme- and Diflavin-Containing Cytochrome P450 BM3 in Escherichia coli: A Whole-Cell Biocatalyst for Oxidation

  • Yim, Sung-Kun;Kim, Dong-Hyun;Jung, Heung-Chae;Pan, Jae-Gu;Kang, Hyung-Sik;Ahn, Tae-Ho;Yun, Chul-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.712-717
    • /
    • 2010
  • Cytochrome P450 enzymes (P450s) are involved in the synthesis of a wide variety of valuable products and in the degradation of numerous toxic compounds. The P450 BM3 (CYP102A1) from Bacillus megaterium was the first P450 discovered to be fused to its redox partner, a mammalian-like diflavin reductase. Here, we report the development of a whole-cell biocatalyst using ice-nucleation protein (Inp) from Pseudomonas syringae to display a hemeand diflavin-containing oxidoreductase, P450 BM3 (a single, 119-kDa polypeptide with domains of both an oxygenase and a reductase) on the surface of Escherichia coli. The surface localization and functionality of the fusion protein containing P450 BM3 were verified by flow cytometry and measurement of enzymatic activities. The results of this study comprise the first report of microbial cell-surface display of a heme- and diflavin-containing enzyme. This system should allow us to select and develop oxidoreductases containing heme and/or flavins into practically useful whole-cell biocatalysts for extensive biotechnological applications, including selective synthesis of new chemicals and pharmaceuticals, bioconversion, bioremediation, live vaccine development, and biochip development.

The Roles of Estrogens in the Efferent Ductules of the Male Reproductive System : A Review

  • Min, Tae-Sun;Lee, Ki-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1118-1126
    • /
    • 2010
  • Male reproduction is influenced by a number of intrinsic and extrinsic factors, including environmental endocrine disruptors. Testosterone is a well recognized intrinsic regulator for development and function of the male reproductive tract, and thus male fertility. The testis and semen of many mammalians contain an unusually high concentration of estrogen. Testosterone is converted into estrogen by the enzymatic action of cytochrome P450 aromatase complex (Cyp19a1). Of the male reproductive tract, the efferent ductules (EDs) possess exceptionally elevated levels of estrogen receptors (ERs), ER${\alpha}$ and ER${\beta}$, indicating that estrogen, in addition to testosterone, would have a functional role in regulation of male reproduction. First, this review has focused on description and summary of what is currently known for functions of estrogen in the EDs. The biosynthetic pathway of estrogen occurring in the testis is briefly covered, following by detailed explanation of the morphology and physiology of EDs. In the next section, the sources and targets of estrogen in the male reproductive tract are highlighted, and possible functional roles of estrogen in the EDs are justified from the aspect of physiology, molecular biology, and morphology in adult animal models. Also, this section covers the importance of estrogen and ERs in maintaining normal function and morphology of the EDs during postnatal development. In the last part of this review, the effects of extrinsic factors, especially environmental endocrine-disruptors, on the EDs is summarized. The intent of this review is to emphasize the importance of estrogen for regulation of physiological function of the EDs, and thus male fertility.

The Effect of Baekhogainsam-tang on Metabolism through Modulation of the Gut Microbiota and Gene Expression in High-Fat Diet Induced Metabolic Syndrome Animal Model (고지방식이로 유도된 대사증후군 모델 동물에서 백호가인삼탕(白虎加人參湯)의 장내미생물 및 유전자 발현 조절을 통한 대사 개선 효과)

  • Min-Jin Cho;Song-Yi Han;Soo Kyoung Lim;Eun-Ji Song;Young-Do Nam;Hojun Kim
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.3
    • /
    • pp.1-15
    • /
    • 2023
  • Objectives We aimed to find out the improvement effect of Baekhogainsam-tang (Baihu Jia Renshen-tang, BIT) on metabolic syndrome and alteration of microbiota and gene expression. Methods We used male C57BI/6 mice and randomly assigned them into three groups. Normal control group was fed 10% kcal% fat diet, high-fat diet (HFD) group was fed 45% kcal% fat diet and 10% fructose water. BIT group was fed same diet as HFD group and treated by BIT for once daily, 6 days per week, total 8 weeks. We measured their body weight and food intake every week and performed oral glucose tolerance test 1 week before the end of the study. Then we collected the blood sample to measure triglyceride, total cholesterol, high-density lipoprotein cholesterol, insulin, and hemoglobin A1c. We harvested tissue of liver, muscle, fat, and large intestine for quantitative polymerase chain reaction (qPCR) and histopathological examination. Fresh fecal samples were collected from each animal to verify alterations of gut microbiota and we used RNA from liver tissue for microarray analysis. Results The body weight and fat weight of BIT group were reduced compared to HFD group. The qPCR markers usually up-regulated in metabolic syndrome were decreased in BIT group. Bacteroides were higher in BIT group than other groups. There were also differences in gene expressions between two groups such as Cyp3a11 and Scd1. Conclusions We could find out BIT can ameliorate metabolic syndrome and suggest its effect is related to gut microbiota composition and gene expression pattern.

In Vitro Metabolism of a New Cardioprotective Agent, KR-33028 in the Human Liver Microsomes and Cryopreserved Human Hepatocytes

  • Kim Hyojin;Yoon Yune-Jung;Kim Hyunmi;Cha Eun-Young;Lee Hye Suk;Kim Jeong-Han;Yi Kyu Yang;Lee Sunkyung;Cheon Hyae Gyeong;Yoo Sung-Eun;Lee Sang-Seop;Shin Jae-Gook;Liu Kwang-Hyeon
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1287-1292
    • /
    • 2005
  • KR-33028 (N-[4-cyano-benzo[b]thiophene-2-carbonyl]guanidine) is a new cardioprotective agent for preventing ischemia-reperfusion injury. This study was performed to identify the metabolic pathway of KR-33028 in human liver microsomes and to compare its metabolism with that of cryopreserved human hepatocytes. Human liver microsomal incubation of KR-33028 in the presence of NADPH and UDPGA resulted in the formation of four metabolites, M1, M2, M3, and M4. M1 and M2 were identified as 5-hydroxy-KR-33028 and 7-hydroxy-KR-33028, respectively, on the basis of LC/MS/MS analysis with the synthesized authentic standard. M3 and M4 were suggested to be dihydroxy-KR-33028 and hydroxy-KR-33028-glucuronide, respectively. Metabolism of KR-33028 in cryopreserved human hepatocytes resulted in the formation of M1, M2, and M4. These data show a good correlation between major metabolites formed in human liver microsomes and cryopreserved human hepatocytes. In addition, KR­33028 was found to inhibit moderately the metabolism of CYP1A2 substrates. Based on the results obtained metabolic pathway of KR-33028 is proposed.