• Title/Summary/Keyword: cylinder test

Search Result 908, Processing Time 0.025 seconds

Applicability of Bi-directional Load Test for Evaluating Bearing Capacity of Helical Piles (헬리컬 파일의 지지력 산정을 위한 양방향 재하시험의 적용성 평가)

  • Lee, Dongseop;Na, Kyunguk;Lee, Wonje;Kim, Hyung-Nam;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.77-85
    • /
    • 2014
  • The helical pile has become popular with some constructional advantages because relatively compact equipment is needed for installing helical piles. However, field loading tests for estimating the bearing capacity of helical piles have drawbacks that the required dead load should be as much as the operation load, and reaction piles or anchors are required. In this paper, the bi-directional load test without necessity of reaction piles and loading frames was applied to the helical pile, and the load-settlement curves of the helical piles were measured. The bi-directional load test was performed in two separate stages with the aid of a special hydraulic cylinder whose diameter is equal to that of the pile shaft. In the first stage, the hydraulic cylinder is assembled immediately above the bottom helix plate, and the end bearing capacity of the helical pile is measured. In the second stage, the hydraulic cylinder is assembled above the top helix plate, and the skin friction of the helical pile is measured. The pile loading-test program was carried out for the two different helical piles with the shaft diameter of 89 mm and 114 mm, respectively. However, the configuration of helix plates is identical with three helix plates of 450-, 350-, 200- mm diameter. Results of the bi-directional load test were verified by the conventional static pile loading test. As a result, the bearing capacity estimated by the bi-directional load test is in good agreement with the result of the conventional pile loading test.

Visualization of Natural Convection Heat Transfer on Horizontal Cylinder Using the Copper Electroplating System (전기도금계를 이용한 수평관 외부 자연대류의 시각화)

  • Heo, Jeong-Hwan;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.43-51
    • /
    • 2011
  • Natural convection heat transfer phenomena on a horizontal cylinder have been studied experimentally in order to investigate the applicability of analogy experimental methodology using a copper electroplating system and to visualize the local heat transfer rates depending on the angular position and the diameter of the horizontal cylinder. In the copper electroplating system, the copper ion produced at the anode moves by convection and diffusion to the cathode and reduces at the cathode, representing the heat transfer. By using aluminum cathode with a distinguishable color, the amount of copper plated could visualize the amount of heat transferred depending on the angular position of the cylinder. The diameter of the cylinder is varied from 0.01m to 0.15m, which correspond to Rayleigh numbers in the range of $1.73{\times}10^7$ to $5.69{\times}10^{11}$. The test results are in good agreement with existing heat transfer correlations.

Operation and Result Analysis of Hydraulic Vehicle Holding Device (발사체 지상고정장치 유압시스템 작동 시험 및 결과 분석)

  • Kim, Dae Rae;Yang, Seong Pil;Lee, Jae Jun;Song, Oh-Seob;Lee, Young-Shin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.80-88
    • /
    • 2018
  • The function of a vehicle holding device (VHD) is to securely hold a launch vehicle on the launch pad and release the launch vehicle at maximum thrust after engine ignition to allow lift-off of the launch vehicle. During the release of the launch vehicle, to prevent the Ka doing a doing a doing mode, which is the vertical oscillation of the entire liquid propellant, the release of the launch vehicle should be gradual. In this study, for the gradual release of a launch vehicle, a hydraulic system comprising an accumulator and pyro valve to operate a hydraulic cylinder and control the speed of the cylinder with an orifice is introduced. Through a test, the influence of design variables on the cylinder speed is analyzed. Based on this, the design values of the hydraulic cylinder are determined. Through this study, the engineering basis for developing a VHD releasing a launch vehicle at maximum thrust is provided.

A Study on Effect of Scale Formation in Water Jacket on Thermal Durability in LPG Engine (엔진 물통로 내부 벽면 스케일 축적이 LPG 엔진의 열적 내구성에 미치는 영향에 대한 연구)

  • 류택용;신승용;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, the effects of scale formation in engine water jacket upon the thermal durability of engine itself and its component parts were studied. To understand the effect of quality of water, a full load engine endurance test for 50 hours was carried out with not-treated underground water. The followings were found through the tested engine inspection after the endurance test; 1-2 mm thick scale formation in the engine water jacket, valve seat wear, piston top land scuffing, piston pin stick, and cylinder bore scuffing in siamese area. In order to understand the causes of above test results, the heat rejection rate to coolant, the metal surface temperature of combustion chamber, and the oil and exhaust gas temperatures were measured and analyzed. The scale formed in the engine water jacket played a role as thermal insulator. The scale formed in the engine reduced the heat rejection rate to coolant and it caused to increase the metal surface temperature. The reduced heat rejection rate to coolant increased the heat rejection rate to oil and exhaust gas and increased the oil and exhaust gas temperature. Also, the reasons of valve seat wear, piston top land scuffing and cylinder bore scuffing, and piston pin stick quantitatively analyzed in this paper.

  • PDF

Burst Performance Test of Filament Wound Kick Motor Case (필라멘트 와인딩으로 제작된 킥모터 연소관의 파열 성능 시험)

  • Yi, Moo-Keum;Kil, Gyoung-Sub;Cho, In-Hyun;Park, Jae-Sung;Kim, Joong-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.183-186
    • /
    • 2008
  • Both structural analysis and hydraulic test have been conducted to confirm the burst characteristics of filament wound solid motor case. Failure criteria have been defined with bursting above 150% of MEOP and failure in the cylinder. The results of analysis showed that filament fiber in the cylinder should be broken at about 2088psig. From a hydraulic test the same failure mode and the level of 2200psig of burst pressure have been proved. With these results, it is verified that a filament wound case meets burst requirements.

  • PDF

Determination of Diesel Sprays Characteristics in Real Engine In-Cylinder air Density and Pressure Conditions

  • Payri Raul;Salvador F. J.;Gimeno J;Soare V.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2040-2052
    • /
    • 2005
  • The present paper centers on the establishment of a quantified relationship between the macroscopic visual parameters of a Diesel spray and its most influential factors. The factors considered are the ambient gas density, as an external condition relative to the injection system, and nozzle hole diameter and injection pressure as internal ones. The main purpose of this work is to validate and extend the different correlations available in the literature to the present state of the Diesel engine, i.e. high injection pressure, small nozzle holes, severe cavitating conditions, etc. Five mono-orifice, axi-symmetrical nozzles with different diameters have been studied in two different test rigs from which one can reproduce solely the real engine in-cylinder air density, and the other, both the density and the pressure. A parametric study was carried out and it enabled the spray tip penetration to be expressed as a function of nozzle hole diameter, injection pressure and environment gas density. The temporal synchronization of the penetration and injection rate data revealed a possible explanation for the discontinuity observed as well by other authors in the spray's penetration law. The experimental results obtained from both test rigs have shown good agreement with the theoretical analysis. There have been observed small but consistent differences between the two test rigs regarding the spray penetration and cone angle, and thus an analysis of the possible causes for these differences has also been included.

Evaluation of Structural Stiffness Degradation and Burst Pressure Measurement of the FM Kick-Motor Combustion Case (킥모터 FM 규격 연소관에 대한 강성저하 평가 및 파열압력 측정)

  • Yi, Moo-Keun;Cho, In-Hyun;Kim, Joong-Suk;Lee, Won-Bok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.72-77
    • /
    • 2010
  • A hydraulic test on a filament wound case of Kick-Motor was conducted to evaluate the structural stiffness degradation and to confirm the burst performance. Failure criteria have been defined with bursting above 150% of MEOP(Maximum Expected Operation Pressure) and failure in the cylinder. The analysis result showed that filament fiber in the cylinder should be broken at about 2088psig. From a hydraulic test it has been verified that composite case meets the failure requirements, and that the stiffness does not decrease even after a year since the manufacturing.

Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure

  • Cho, Sang-Rai;Muttaqie, Teguh;Do, Quang Thang;Kim, Sinho;Kim, Seung Min;Han, Doo-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.711-729
    • /
    • 2018
  • This paper reports on the experimental investigations on the failure modes of ring-stiffened cylinder models subjected to external hydrostatic pressure. Nine models were welded from general structural steel. The shells were initially formed by cold-rolling, and flat-bar ring frames were welded to the shell. The hydrostatic pressure tests were conducted by using water as the medium in pressure chambers. The details of the preparation and main test were briefly explained. The investigation identified the consequence of the structural failure modes, including: shell yielding, local shell buckling between ring stiffeners, overall buckling of the shell together with the stiffeners, and interactive buckling mode combining local and overall buckling. In addition, the ultimate strengths were predicted by using existing design codes. Non-linear numerical computations were also conducted by employing the actual imperfection coordinates. Finally, accuracy and reliability of the predictions of design formulae and numerical were substantiated with the test results.

Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure

  • Muttaqie, Teguh;Thang, Do Quang;Prabowo, Aditya Rio;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.431-443
    • /
    • 2019
  • The present paper illustrates a numerical investigation on the failure behaviour of ring-stiffened cylinder subjected to external hydrostatic pressure. The published test data of steel welded ring-stiffened cylinder are surveyed and collected. Eight test models are chosen for the verification of the modelling and FE analyses procedures. The imperfection as the consequences of the fabrication processes, such as initial geometric deformation and residual stresses due to welding and cold forming, which reduced the ultimate strength, are simulated. The results show that the collapse pressure and failure mode predicted by the nonlinear FE analyses agree acceptably with the experimental results. In addition, the failure mode parameter obtained from the characteristic pressure such as interframe buckling pressure known as local buckling pressure, overall buckling pressure, and yield pressure are also examined through the collected data and shows a good correlation. A parametric study is then conducted to confirm the failure progression as the basic parameters such as the shell radius, thickness, overall length of the compartment, and stiffener spacing are varied.

A Study on theEnhancement of Strength of laterally Confined Concrete by Carbon-Fiber Sheet (탄소섬유쉬트로 횡구속된 콘크리트의 강도 증진에 관한 연구)

  • Jeong, Sin-Uk;Ryu, Cheon;Kim, Eu-Sung;Kim, Wha-Il;Kim, Sang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.462-471
    • /
    • 1997
  • In this study, we studied the compression test of laterally confined concrete cylinder by the carbon-fiber sheet(CFS), and compared the test results with previous test results and relationships by other researchers. Our objectives is to find the stress-strain characteristics and the enhancement of strength of the confined concrete to the lateral pressure offered by CFS.

  • PDF