• Title/Summary/Keyword: cylinder Structure

Search Result 523, Processing Time 0.023 seconds

Flow Structure of the Wake behind an Elliptic Cylinder Close to a Free Surface

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1784-1793
    • /
    • 2001
  • The flow fields around an elliptic cylinder of axis ratio AR=2 adjacent to a free surface were investigated experimentally using a water channel. The main objective is to understand the effect of the free surface on the flow structure in the near-wake. The flow fields were measured by varying the depth of cylinder submergence, for each experimental condition, 350 velocity fields were measured using a single-frame PIV system and ensemble-averaged to obtain the spatial distribution of turbulent statics. For small submergence depths a large-scale eddy structure was observed in the near-wake, causing a reverse flow near the free surface, downstream of the cylinder. As the depth of cylinder submergence was increased, the flow speed in the gap region between the upper surface of the cylinder and the free surface increased and formed a substantial jet flow. The general flow structure of the elliptic cylinder is similar to previous results for a circular cylinder submerged near to a free surface. However, the width of the wake and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder are smaller tan those for a circular cylinder.

  • PDF

Effect of cylinder aspect ratio on wake structure behind a finite circular cylinder located in an atmospheric boundary layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-Woo;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.247-252
    • /
    • 2001
  • The flow around free end of a finite circular cylinder(FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wake structures behind a 2-D cylinder and a finite cylinder located in a uniform flow were also measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency is decreased and the vortex formation length is increased compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, in the region near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly established. In the wake center region, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit, compared to that of uniform flow.

  • PDF

FSI Analysis on a Floating Cylinder by 3D Flow-Structure Interaction (FSI) Measurement System (유동-구조상관(FSI) 3차원 측정시스템에 의한 부유식 실린더 연동운동해석)

  • Doh, D.H.;Sang, J.W.;Hwang, T.G.;Pyeon, Y.B.;Baek, T.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1574-1579
    • /
    • 2004
  • A simultaneous measurement system that can analyze the flow-structure interactions(FSI) has been constructed and analyses on the flow field and the motion field of a floating cylinder was made. The three-dimensional vector fields around the cylinder are measured by 3D-PTV technique while the motion of the cylinder forced by the flow field is measured simultaneously with a newly developed motion tracking algorithm(bidirectional tracking algorithm). The cylinder is pendant in the working fluid of a water channel and the surface of the working fluid is forced sinusoidal to make the cylinder bounced. The interaction between the flow fields and the cylinder motion is examined quantitatively.

  • PDF

Effect of Cylinder Aspect Ratio on Wake Structure Behind a Finite Circular Cylinder Located in an Atmospheric Boundary Layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-U;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1821-1830
    • /
    • 2001
  • The flow around free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wakes behind a 2-D cylinder and a finite cylinder located in a uniform flow were measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency decreases and the vortex formation length increases compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly distinguished. Around the center of the wake, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit compared to that of uniform flow.

The Effect of the Intake Flow on the Spray Structure of a High Pressure 11-Hole Fuel Injector in a DISI Engine (직접분사식 가솔린 기관에서 흡입유동이 고압 11공 연료분사기의 분무형상에 미치는 영향)

  • Kim, Seong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.722-727
    • /
    • 2009
  • The effect of the intake flow on the spray structure of a high pressure 11-hole fuel injector were examined in a single cylinder optical direct injection spark ignition (DISI) engine. The effects of injection timing and in-cylinder charge motion were investigated using the 2-dimensional Mie scattering technique. It was confirmed that in the homogeneous charge mode, the in-cylinder swirl charge motion played a major role in the fuel spray distribution during the induction stroke rather than the tumble flow. But, in the stratified charge mode, the effect of the in-cylinder charge was not so large that the injected spray pattern was nearly maintained and the increase of in-cylinder pressure by the upward moving piston reduced the fuel spray penetration.

Safety Evaluation of a Cylinder Valve for Compressed Natural Gas Vehicle Pressure Vessels using Fluid-structure Interaction Analysis (연성해석을 이용한 CNG 차량 압력 용기용 밸브의 안전성 평가)

  • Lee, Hyo Ryeol;Ahn, Jung Hwan;Kim, Bok Man;Kim, Hwa Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.103-108
    • /
    • 2014
  • Growing concerns about environmental pollution have led to an increase in the demand for compressed natural gas (CNG) vehicles in recent years. CNG vehicles are equipped with a cylinder valve installed in a high-pressure vessel to control the CNG flow. The cylinder valve must meet high quality safety standards because the pressure vessel stores high-pressure CNG. Therefore, safety evaluation of the cylinder valve is necessary to ensure the safety of CNG vehicles. In this study, fluid-structure interaction analysis for the structural integrity of the cylinder valve were conducted using a commercial finite element analysis code(ANSYS WORKBENCH V14). The CFD analysis was performed using a steady-state technique according to the inlet and outlet pressures in order to predict the pressure distribution. Structural analysis was performed by a static structure technique at the maximum working pressure to evaluate the structural integrity of the cylinder valve. From the results, the safety factor of the valve component is between 1.57 and 21.5.

THE INTEGRATION OF CAD/CAM/CAE BASED ON MULTI MODEL TECHNOLOGY IN THE DEVELOPMENT OF CYLINDER HEAD

  • Xu, Xiangyang;Weiss, Ulrich;Gao, Guoan
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.47-52
    • /
    • 2002
  • The integration of CAD/CAM/CAE in product development is the key to realize concurrent engineering. Generally, different systems are employed in product development departments. These different systems create a lot of trout)toes such as difficulty in communication, misunderstanding and so on. A new approach to integrate CAD/CAM/CAE in one system based on CATIA thor the end-to-end process in cylinder head development is presented. Hulti Model Technology (MMT) is used to create consistent and associated CAD models for the end-to-end process in cylinder head development. The concept and method to create and organize multi models are discussed. A typical four-layer structure of HHT for mechanical products is defined. The multi level structure of the cylinder head models based on MMT is provided. The CAD models of cylinder head created based on MMT can be used as the consistent model. All models in the downstream of cylinder head development such as structure analysis, CFD, sand core design , casting simulation and so oil are associated with the CAD models. Practice shows the approach in this paper enables the development process to be carried concurrently and can obviously shorten time to the market, reduce product cost and improve product quality.

A Molecular Dynamics Simulation on the Self-assembly of ABC Triblock Copolymers.3. Effects of Block Composition in Asymmetric Triblock Copolymers

  • Ko, Min-Jae;Kim, Seung-Hyun;Jo, Won-Ho
    • Fibers and Polymers
    • /
    • v.4 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • The self-assembly of asymmetric ABC triblock copolymers in the ordered structure is investigated using an isothermal-isobaric molecular dynamics simulation. Unlike symmetric A BC triblock copolymers, more fascinating mophologies are observed in asymmetric ones because of a larger difference of incompatibility between the components. Various modes of self-assembly in assymmetric ABC triblock copolymers are also observed depending on the block composition. When the composition of block A Is changed from 0.125: to 0.25 at the same $f_B$ : 0.25, the morphological transition from the “cylinder in cylinder” to “cylinders at cylinder” structure is observed in the simulation. In the case of ABC triblocks with $f_B$=0.5, a lamellar-type structure is changed to a cylinder-type structure with increasing the length of block A. When the midblock length increases further to $f_B$=0.625, the “spheres on cylinder” structure is observed in both the $A_{10}$$B_{50}$$C_{20}$ and $A_{20}$$B_{50}$$C_{10}$ triblocks. From these results, the phase diagram of ABC triblock copolymers can be constructed.

Flow Control of Turbulent Wake Behind a Circular Cylinder Using a Self-adjusting Rod (자율 제어봉을 이용한 실린더 후류의 유동제어에 관한 연구)

  • Lim Hee Chang;Kam Dong Hyuk;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.467-470
    • /
    • 2002
  • The offects of a small control rod (d=3mm) located near a main circular cylinder on the drag reduction and wake structure modification were investigated. The location of the small control rod mounted on a rod-like spring is self-adjusting according to the wake structure far optimal control of the flow around the main cylinder. The experiments were carried out at the Reynolds numbers based on the cylinder diameter (D=50mm) in the range $Re_{D}=1{\times}10^4{\~}6{\times}10^4$. Mean velocity and turbulent statistics were measured with varying the angle along the cylinder circumference ${\Theta}=15^{\circ},\;30^{\circ},\;45^{\circ}$ and the distance between the main and control rods L =0.7, 1. Compared with the bare cylinder, the main circular cylinder with the fixed and self-adjusting rods reduced drag coefficient by $10{\%}$ at the angle of ${\Theta}=45^{\circ}$. For the main cylinder with self-adjusting rot as the Reynolds numbers increase, the streamwise mean velocity is increased, however, the turbulence intensity is decreased. In addition, the control rods tested in this study are effective at higher Reynolds number than at lower Reynolds number.

  • PDF

Analysis of Scattering Characteristics of a Rectangular Waveguide with Conducting Half Cylinders using the Mode Matching Method (모드매칭법을 이용한 금속의 Half Cylinder가 있는 구형 도파관의 산란 특성 해석)

  • 김원기;천동완;김상태;신철재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.962-971
    • /
    • 2004
  • In this paper, we present the numerical analysis method for analyzing scattering characteristics of a rectangular waveguide with the conducting half cylinder using the mode matching method and compute scattering characteristics of a waveguide according to the rotation and changing radius of the half cylinder. Also, in conjunction with the generalized scattering method, the proposed method can be easily applied to a rectangular waveguide with cascade structure of conducting half cylinders. From the simulated result of a two pole filter, resonance frequency could be controlled by the rotation of half cylinders. The simulated result shows good agreement with the HFSS's result. The proposed structure and analysis method are easily applied to the design of waveguide components with conducting half cylinders.