• Title/Summary/Keyword: cyclodextrins

Search Result 84, Processing Time 0.017 seconds

Identification of Toxic Chemicals Using Polypyrrole-Cyclodextrin Hybrids (폴리피롤-사이클로덱스트린 혼성체를 이용한 유해화합물질의 검출)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.186-189
    • /
    • 2019
  • Polypyrrole is a typical electrical conducting polymer, which has an excellent charge transport property. Cyclodextrins are a group of toxic-free and cyclic oligosaccharide molecules, capable of capturing low molecular weight chemicals. Considering these advantages, hybrid materials of polypyrrole and cyclodextrin can be used to detect hazardous compounds. Cyclodextrin molecules can accommodate toxic chemicals by the formation of host-guest complexes and generate electric signals, which are effectively delivered by polypyrrole backbone. In this study, the polypyrrole/cyclodextrin hybrid material was prepared using a facile wet method and included into a hydrogel. Subsequently, it was applied to a simple sensor system with a gold-patterned electrode for the detection of potentially hazardous material, methyl paraben. Compared with pristine polypyrrole, it was found that the polypyrrole/cyclodextrin hybrid showed an improved performance. This study can be an example of using environmentally benign conducting polymer/cyclodextrin hybrids as sensing media.

Production of Cyclodextrin by Bacillus sp. I-5 Cyclodextrin Glucanotransferase (Bacillus sp. I-5 Cyclodextrin Glucanotransferase에 의한 Cyclodextrin의 영향)

  • Kim, Soeng-Hyuck;Choi, Jong-Soo;Chung, Kap-Taek;Yoo, Young-Soo;Jung, Dong-Sun;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.6-11
    • /
    • 1994
  • A cyclodextrin glucanotransferase(CGTase)-producing Bacillus sp. I-5 was isolated from soil and the enzyme exhibited the maximum reaction rate at pH 8.0 and $50^{\circ}C$. It was found that CGTase of I-5 produced ${\beta}-$ and ${\gamma}-CD$ mainly but the production ratio of cyclodextrins (CDs) was influenced by the buffer solution. Sodium acetate significantly stimulated the formation of ${\gamma}-CD$, increasing the content by 35%. The production of CDs was influenced by DE value of starch. The results indicated that DE value in the range of $3.5{\sim}6.0$ were most effective for the CD formation. CGTase was immobilized on the reversibly soluble-insoluble carrier, hydroxypropyl mothylcellulose acetate succinate. The immobilized CGTase was soluble at pH 7.5, and precipitated easily at pH 6.0. Enzyme reactor was designed to produce CD continuously. It was composed of three major stages-CD produttion by immobilized CGTase, conversion of the residual dextrin to glucose by amylase and glucoamylase and alcohol fermentation by yeasts to remove the glucose into alcohol. The yield of total CDs was 3.65g from 10g soluble starch.

  • PDF

Production Enhancement of Benzophenanthridine alkaloids in the Suspension Cultures of California poppy using Cyclodextrin (양귀비 세포 현탁배양계에서 Cyclodextrin을 이용한 Benzophenanthridine alkaloids의 생산성 증대)

  • 박세춘;조규헌
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • In this research, an extractive production system for alkaloids, where production and some degree of separation occur simultaneously, was developed in a way that the fast removal of alkaloid produced from the suspension cultures was done by capturing alkaloid with cyclodextrins. The alkaloid production was substantially enhanced up to 40 fold when the solid cultures of E. califonica cells treated with ${\beta}$-cyclodextrin compared to the control. The enhancement of alkaloid production was also observed in the suspension cultures. Interestingly, the production pattern seemed to change when the cultures were treated with ${\beta}$-cyclodextrin so that the major part of the alkaloids in the treated cultures was present in the medium, while the non-treated cultures produced the alkaloids intracellularly. ${\beta}$-cyclodextrin was the most effective one in terms of the alkaloid production among the cyclodextrilns(${\alpha}$-cylodextrin, ${\beta}$-cyclodextrin and ${\gamma}$-cyclodextrin) tested in the suspension cultures. ${\beta}$-cyclodextrin showed no adverse effect on the cell growth. The most effective concentration of ${\beta}$-cyclodextrin was observed around 1.5% (w/v) in the suspension cultures. The formation of the inclusion complex of the alkaloids with ${\beta}$-cyclodextrin in the suspension cultures was confirmed by detecting the shift of UV absorbance from 274 nm to 282 nm with a UV spectrophotometer.

  • PDF

Interactions between Water-Soluble Polyparacyclophanes and Drugs (III) -Complex Formation of Water-Soluble Polyparacyclophanes with Fluorescent Hydrophobic Naphthalene Derivatives in Aqueous Solution- (수용성 폴리파라시클로판류와 약물과의 상호작용(제 3보)-수용액 중 수용성 폴리파라시클로판류와 형광 소수 나프탈렌 유도체류와의 복합체 형성-)

  • Chun, In-Koo;Lee, Min-Hwa
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.2
    • /
    • pp.71-79
    • /
    • 1989
  • Complex formation of water-soluble polyparacyclophanes bearing two diphenylmethane or two diphenyl ether skeletons with l-anilinonaphthalene-8-sulfonate (ANS) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS) was investigated quantitatively to develop useful host compounds comparing with ${\alpha}\;-\;and\;{\beta}-cyc1odextrins$$({\alpha}-\;and\;{\beta}-CyDs$) in aqueous solution. Benesi-Hildebrand type analysis of the fluorescent intensity showed that the dissociation constants (Kd) of paracyclophane-ANS complexes were $1.55\;{\times}\;10^{-4}M$ for 1,6,20,25-tetraaza[6.1.6.1]paracyclophane(CPM 44) and $1.23\;{\times}\;10^{-4}M$ for 1,7,21,27-tetraaza[7.1.7.1]paracyclophane (CPM 55), and those of paracyclophane-TNS complexes were $6.99\;{\times}\;10^{-6}M$ for CPM 44 and $6.23\;{\times}\;10^{-5}M$ for CPM 55, in 1:1 molar ratio. On the other hand, the Kd values of 1,7,21,27-tetraaza-14,34-dioxa[7.1.7.1]paracyclophane (CPE 55)-ANS, 1,8,22,29-tetraaza-15,36-dioxa[8.1.8.1]paracyclophane (CPE 66)-ANS, CPE 55-TNS, CPE 66-TNS complexes were $1.75\;{\times}\;10^{-3}M$, $3.07\;{\times}\;10^{-3}M$, $3.75\;{\times}\;10^{-3}M$ and $2.15\;{\times}\;10^{-3}M$, respectively. On the contrary, the Kd values of ${\alpha}-CyD-ANS$, ${\beta}-CyD-ANS$, ${\alpha}-CyD-TNS$ and ${\beta}-CyD-TNS$ complexes were found to be $3.98\;{\times}\;10^{-2}M$, $1.05\;{\times}\;10^{-2}M$, $1.38\;{\times}\;10^{-2}M$ and $3.52\;{\times}\;10^{-4}M$, respectively. These results mean that the complexation of CPMs with ANS or TNS is by 5.6-1,975 fold stronger than that for ${\alpha}-or\;{\beta}-CyDs$, and the complex formation of CPEs with ANS or TNS is nearly same as or somewhat stronger than that for ${\alpha}-or\;{\beta}-CyDs$. From the Kd values determined at different temperatures, thermodynamic parameters were calculated and the complexation was found to be a spontaneous exothermic reaction. The effects of pH on Kd values of CPM 44-ANS, and CPM 55-ANS complexes were negligible in the range of pH 1.2-1.8. However, the Kd values of these complexes increased significantly with increasing ionic strength.

  • PDF