• Title/Summary/Keyword: cyclic triaxial deformation test

Search Result 21, Processing Time 0.022 seconds

Study on Plastic Deformation of Cohesionless Soil through Cyclic Triaxial Test (반복삼축압축실험을 통한 사질토의 소성변형 특성에 관한 연구)

  • Shin, Eun-Chul;Kang, Hyoun-Hoi;Choi, Chan-Young;Yang, Hee-Aaeng
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1370-1376
    • /
    • 2008
  • The structure of railroad or subway is that low fare transportation system of the large traffic volume. Like this structure is subjected to the cyclic load of moving vehicle. Consequently the result of the settlement analysis or plastic deformation prediction of railroad bed could be used as an important factor in safety of the railroad. The results of cyclic triaxial test were used in the numerical analysis of power model which Li and Selig(1994) developed. The soil samples were obtained from the construction site of railroad. Cyclic triaxial test was conducted with the variation of the magnitude of cyclic load and soil types. The large magnitude of plastic deformation in the railroad bed is caused of structure failure of the railroad.

  • PDF

Loading Frequency Dependencies of Cyclic Shear Strength and Elastic Shear Modulus of Reconstituted Clay (재구성 점토의 반복전단강도 및 전단탄성계수의 재하 주파수 의존성)

  • Ishigaki, Shigenao;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.73-79
    • /
    • 2010
  • In the present study, the loading frequency dependencies of cyclic shear strength and elastic shear modulus of reconstituted clay were examined by performing undrained cyclic triaxial tests and undrained cyclic triaxial tests to determine deformation properties. The result of undrained cyclic triaxial test of reconstituted and saturated clay shows that a faster frequency leads to higher stress amplitude ratio, but when the frequency becomes fast up to a certain point, the stress amplitude ratio will reach its maximum limit and the frequency dependence becomes insignificant. And also, the result of undrained cyclic triaxial deformation test shows a fact that a faster loading frequency leads to higher equivalent shear modules and smaller hysteresis damping ratio, and confirms the frequency dependence of cohesive soil. Meanwhile, the result of the creep test shows that continuing creep is created in the undrained cyclic triaxial test with slow loading frequency rate, and since loading rate becomes slower at the vicinity of the maximum and the minimum deviator stress due to sine wave loading, the vicinity of the maximum and the minimum deviator stress shall be more influenced by creep.

An Experimental Study on Dynamic Deformation Properties of Rock Materials using Large Triaxial Testing Apparatus (대형진동삼축시험기를 이용한 암석재료의 동적변형특성에 관한 실험적 연구)

  • 신동훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.299-308
    • /
    • 2003
  • In order to investigate the dynamic deformation properties of rockfill materials in small strain level, cyclic triaxial tests were conducted using the large cyclic triaxial testing apparatus, which was developed by Water Resources Research Institute of KOWACO in 2001. Two types of rockfill materials consisting of granite and shale-sandstone were tested in this study. The test results show that G/G$\_$max/ of granite specimen decreases more than that of shale-sandstone with the increase of shear strain and the increase ratio in the maximum shear modulus G$\_$max/ of granite is bigger than the ratio of shale-sandstone.

  • PDF

Post-Cyclic Deformation Behavior of Non-Liquefied Weathered Soils (반복재하후 미액상화 풍화토 지반의 변형 거동)

  • 최연수;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.485-492
    • /
    • 2001
  • Weathered soil is one of the most representative soils in Korea. In this study, a series of cyclic triaxial tests was carried out to predict the post-cyclic deformation behavior of weathered soils in case of non-liquefaction. Excess pore pressure response during cyclic loading and volumetric strain during the dissipation of excess pore pressure were measured varying the confining pressure, relative density and cyclic stress ratio. Based on the test results, it Is found that the modified excess pore pressure ratio, excess pore pressure ratio normalized by cyclic stress ratio, is uniquely correlated with the number of cycles irrespective of confining pressure and cyclic stress ratio. Using the newly proposed MEPPR(modified excess pore pressure ratio) concept, it is possible to easily evaluate the excess pore pressure and the settlement of weathered soils due to cyclic loading by greatly reduced number of tests. It is also verified that the reconsolidation volumetric strain is independent of the way how the excess pore pressure was generated.

  • PDF

Dynamic Deformation Characteristics of Joomunjin Standard Sand Using Cyclic Triaxial Test (반복삼축압축시험을 이용한 주문진 표준사의 동적변형특성 분석)

  • Kim, You-Seong;Ko, Hyoung-Woo;Kim, Jae-Hong;Lee, Jin-Gwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.53-64
    • /
    • 2012
  • In this study, the modified cyclic triaxial tests with Joomunjin standard sand are performed for dynamic deformation characteristics, such as Young's moduli and damping ratio. The cyclic triaxial test is equipped with Local Displacement Transducer (LDT) on the outside of a cell which has a range from $10^{-4}$ to $10^{-1}$ of shear strains, ${\gamma}$ (%), instead of conventional cyclic triaxial test which has linear variable displacement transducer (LVDT) with low precision. With the small strain control, tests were carried out at various loading rates, void ratios, and effective confining pressures. Based on the test results, such as dynamic deformation characteristics, shear modulus, and damping ratio, it is found that the test can measure more range of medium strains (0.02-0.2%) than results obtained from conventional test (resonant column test). For the medium strain range, dynamic deformation characteristics investigated by the cyclic triaxial test are also different from those predicted by nonlinear model in conventional test.

Analysis of Interrelationship between Undrained Static and Cyclic Shear Behavior for Nak-Dong River Sand (낙동강 모래의 비배수 정적 및 반복 전단거동 상호관계 분석)

  • Kim, Dae-Man;Kim, Byung-Tak
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.151-163
    • /
    • 2006
  • This paper presents the interrelationship between undrained static and cyclic shear behavior. Laboratory works were performed through the undralned static and cyclic triaxial test using Nak-Dong River sand. And static triaxial test involved the triaxial extension test for comparison with cyclic shear behavior Cyclic triaxial test was performed with a variety of combination conditions of initial static shear stress $(q_{st})$ and cyclic stress $(q_{cy})$. In this result, the stress path of cyclic shear behavior was correspondent with static shear behavior passing the critical stress ratio (CSR) line because of the development of flow deformation. After that, a failure occurred according to failure line (FL) of static shear behavior. The stress path of cyclic shear behavior showed essentially the same with static shear behavior, although it appears a little different in test method.

Cyclic Strength and Deformation Characteristics of Marine Cohesive Soil (해성 점성토의 동적 강도 및 변형 특성)

  • Kim, Yong-Seong;Seo, Min-Woo;Oh, Sang-Eun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.159-168
    • /
    • 2012
  • 본 연구에서는 해성 점성토에 대하여 반복 삼축시험을 실시하고 응력-변형률 관계 및 유효응력경로 특성 분석을 통해 동적 변형 및 강도 특성을 조사하였다. 시험에 사용된 시료는 일본 도쿠시마현의 코마츠시마 항 인근에서 채취된 점성토이며, 반복 삼축시험으로 동적 비배수 삼축시험, 동적 비배수 삼축시험 후 동적 삼축변형시험, 다단계 동적 비배수 삼축시험, 동적 삼축 변형시험 등 4종류의 시험을 수행하고, 시험 주파수로서 0.1 및 0.01 Hz을 적용하였다. 본 연구 결과 0.01 Hz로 수행된 동적 삼축시험 결과는 0.1 Hz로 수행된 삼축시험 결과보다 평균유효응력의 감소량이 크며, 반복 하중은 해성 점성토의 구조적 약화를 초래하고 초기 거동시 발생하는 간극수압과 밀접하게 관련이 있는 것으로 나타났다. 또한 미소변형률 영역에서 등가 탄성계수는 시험 횟수가 증가함에 따라 점차 감소하며, 감쇠비는 점차 증가하는 것으로 보아 변형계수는 반복 하중으로 인한 전단변형률의 축척에 따른 변형률 의존 거동에 관련하는 것으로 판단된다.

Frequency Dependence in Large Strain Range During Cyclic Triaxial Tests of Clay (점성토의 진동삼축시험시 대변형률영역에서의 주파수 의존성)

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.63-71
    • /
    • 2006
  • In the present study, the dynamic deformation characteristics of clay, including the effect of loading rate in large strain ranges, were examined by performing undrained cyclic triaxial test. The test results showed that the loading rate to failure decreased with increasing loading amplitude and decreasing loading frequency. While the stress-strain relationships was not affected by loading frequency, excess pore pressure was affected significantly with the change in loading frequency. The change for 0.1 Hz was larger for than that of 0.01 Hz, resulting in inclined effective stress paths. Furthermore, the lower the frequency was, the higher the excess pore pressure was in the first loading.

Characteristic Analysis of Permanent Deformation in Railway Track Soil Subgrade Using Cyclic Triaxial Compression Tests (국내 철도 노반 흙재료의 반복재하에 따른 영구변형 발생 특성 및 상관성 분석)

  • Park, Jae Beom;Choi, Chan Yong;Kim, Dae Sung;Cho, Ho Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.64-75
    • /
    • 2017
  • The role of a track subgrade is to provide bearing capacity and distribute load transferred to lower foundation soils. Track subgrade soils are usually compacted by heavy mechanical machines in the field, such that sometimes they are attributed to progressive residual settlement during the service after construction completion of the railway track. The progressive residual settlement generated in the upper part of a track subgrade is mostly non-recoverable plastic deformation, which causes unstable conditions such as track irregularity. Nonetheless, up to now no design code for allowable residual settlement of subgrade in a railway trackbed has been proposed based on mechanical testing, such as repetitive triaxial testing. At this time, to check the DOC or stiffness of the soil, field test criteria for compacted track subgrade are composed of data from RPBT and field compaction testing. However, the field test criteria do not provide critical design values obtained from mechanical test results that can offer correct information about allowable permanent deformation. In this study, a test procedure is proposed for permanent deformation of compacted subgrade soil that is used usually in railway trackbed in the laboratory using repetitive triaxial testing. To develop the test procedure, an FEA was performed to obtain the shear stress ratio (${\tau}/{\tau}_f$) and the confining stress (${\sigma}_3$) on the top of the subgrade. Comprehensive repetitive triaxial tests were performed using the proposed test procedure on several field subgrade soils obtained in construction sites of railway trackbeds. A permanent deformation model was proposed using the test results for the railway track.

Model tests on bearing capacity and accumulated settlement of a single pile in simulated soft rock under axial cyclic loading

  • Zhang, Benjiao;Mei, Can;Huang, Bin;Fu, Xudong;Luo, Gang;Lv, Bu
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.611-626
    • /
    • 2017
  • The research reported herein is concerned with the model testing of piles socketed in soft rock which was simulated by cement, plaster, sand, water and concrete hardening accelerator. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted and the bearing capacity and accumulated deformation characteristics under different static, and cyclic loads were studied by using a device which combined oneself-designed test apparatus with a dynamic triaxial system. The accumulated deformation of the pile head, and the axial force, were measured by LVDT and strain gauges, respectively. Test results show that the static load ratio (SLR), cyclic load ratio (CLR), and the number of cycles affect the accumulated deformation, cyclic secant modulus of pile head, and ultimate bearing capacity. The accumulated deformation increases with increasing numbers of cycles, however, its rate of growth decreases and is asymptotic to zero. The cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles, and finally remains stable after 50 cycles. The ultimate bearing capacity of the pile is increased by about 30% because of the cyclic loading thereon, and the axial force is changed due to the applied cyclic shear stress. According to the test results, the development of accumulated settlement is analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to cyclic loading.