• Title/Summary/Keyword: cyclic behaviors

Search Result 302, Processing Time 0.035 seconds

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.

A Study on the Liquefaction Strength of Silt Containing Sands (실트를 포함하는 모래질 흙의 액상화강도에 관한 연구)

  • Hwang, Dae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.243-252
    • /
    • 1993
  • Undrained cyclic simple shear tests and undrained cyclic triaxial tests were performed on silt containing sand in order to investigate the effects of silt contents on the liquefaction strength and shear characteristics of the sand. From the view that the difference of liquefaction strength for different content of silt stems from dilatancy characteristics of the sand, stress-dilatancy relation of the sand was obtained from drained triaxial test in which the mean stress was kept constant. Considerations on liquefaction behaviors were made by comparing the drained and undrained behaviors of sands during static shear test. It is concluded that ${\lambda}$-value of the stress-dilatancy relation will be closely related to the liquefaction strength.

  • PDF

Initiation and Propagation Behaviors of Micro-Surface-Fatigue Cracks under In-Plane Tension Fatigue Tests (引張 軸荷重 疲勞 에 의한 微小表面 균열 의 發생 . 成長擧動)

  • 서창민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1985
  • In-plane tension fatigue tests (R = 0.05) were carried out to investigate the initiation and propagation behaviors of micro-surface-fatigue cracks on smooth surfaces of a mild steel. Also, the investigations of saturated cyclic strain which can be obtained by the fatigue tests have been made via the cyclic strain intensity factor, .DELTA. $K_{\epsilon}$/, for the purpose of unifying two approaches of the study of fatigue; the one approach is based on the fracture mechanics concept and the other on lowcycle fatigue concept. Some of the results are as follows; The growth rate, d(2a)/dN, of small cracks cannot be represented by one straight line as a function of .DELTA.K for various of the nominal stress range, .DELTA..sigma., and is higher than that of a larger through crack. The rearrangement of the d(2a)/dN by .DELTA..epsilon..root..pi.s( = .DELTA. $K_{\epsilon}$/) with the stress range .DELTA..epsilon. in .DELTA.K replaced by .DELTA..epsilon., strain range, gives one straight line of the .DELTA. $K_{\epsilon}$-d(2a)/dN relation for various values of stress range .DELTA.$_{\epsilon}$../.X>../.

Synthesis and Electrochemical Characteristics of Lantanium and Neodynium Metal Complexes (란탄늄 및 네오디늄 금속의 착물합성과 전기화학적 특성)

  • Oh, Je Jik
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.83-92
    • /
    • 1993
  • The electrochemical behaviors of lanthanide ion(La and Nd) and lanthanide complexes with 2, 2, 6, 6-tetramethyl-3, 5-heptanedione(THD), sym-hydroxydibenzo-16-crown-5(HD16C5) and sym-dibenzo-16-crown-5-oxyacetic acid(D16C5A) ligands in acton solution have been investigated by the use of cyclic voltammetry and direct current polarography. The peak potential and peak current, their dependency on the concentration, temperature, the reversibility of the eleotrode reactions are described. The reduction of the lanthanide ions and complexes in 0.05 M TEAP proceeded one-electron step in first step and one two-electron step in second step. These reduction step was irreversible and the reduction current was diffusion controlled. Macrovcyclic crown ethers, sym-hydroxydibenzo-16-crown-5(HD16C5) and sym-dibenzo-16-crown-5-oxyacetic acid(D16C5A), were prepared from 1, 5-bis-(2-hydroxyphenoxy)-3-oxapentane with epichlorohydrin. The voltammetric behaviors of Ln(III)-HD16C5 and Ln-D16C5A complexes in aceton solution have been investigated by the voltammetric method. The composition and stability constants of lanthanide complexes were determined.

  • PDF

Analytical Simulation of Reversed Cyclic Lateral Behaviors of R.C. Shear Wall Subassemblages Using PERFORM 3D (PERFORM 3D를 이용한 RC 벽식 부분구조의 반전 횡하중 거동에 대한 해석적 모사)

  • Lee, Han-Seon;Jeong, Da-Hun;Hwang, Kyung-Ran;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.23-31
    • /
    • 2010
  • It is necessary to develop reliable but simple analytical models to predict the nonlinear response of reinforced concrete wall structures. In this study, experimental results on the cyclic reversed lateral behaviors of reinforced concrete shear wall assemblages are simulated analytically by using the wall, beam, and column models available in the PERFORM 3D program. Through the comparison of experimental and analytical results, the reliability and limitations of the analysis are evaluated. In addition, the information, which could not be obtained experimentally, such as the internal flow of force, the contribution of the flange walls, and the resisting mechanism of the walls with the contribution of the coupling beam, is provided.

Hysteretic Behavior of Precast Concrete Large Panel Structures Subjected to Horizontal Cyclic Loading (반복 횡하중을 받는 프리캐스트 대형 콘크리트 판구조의 이력특성에 관한 실험적 연구)

  • Seo, Soo-Yeon;Yi, Waon-Ho;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1999
  • Main objective of this study is to examine the hysteretic behaviors and to evaluate the capacity of precast concrete (PC) large panel structures simulated from the prototype of 15-story building, Two 1/2 scaled precast concrete wall specimens and one monolithic reinforced concrete specimen were designed and tested under the cyclic loading conditions. The main parameter of test specimens in PC large panel structure is the type of details for vertical continuity of vertical steel in horizontal joint. Also the behaviors of PC large panel structures are compared with that of monolithic reinforcement concrete wall structure. From the results, the stiffness and energy dissipation ratio of the precast concrete specimens are shown little bit lower than those of monolithic reinforced concrete specimen. In the PC large panel structures, the specimen connected vertically by welding (strong connection) showed higher strength than that of the specimen connected vertically by joint box. However the failure pattern of the former showed more brittle than that of the latter due to the diagonal compressive failure of wall panels.

  • PDF

Seismic Performance of an Inverted V-type Eccentrically Braced Steel Frames with Slit Dampers Using Shape Memory Alloy (형상기억합금을 이용한 슬릿댐퍼 적용 역V형 편심가새골조의 내진 성능)

  • Jang, Han Ryul;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.39-48
    • /
    • 2022
  • The energy dissipation of inverted V-type eccentric steel braced frames can be achieved through the yielding of a slit link, through yielding of a number of strips between slits when the frame is subjected to inelastic cyclic deformation. On the other hand, the development of seismic resistance system without residual deformation is obtained by applying the superelasdtic shape memory alloy (SMA) material into the brace and link elements. This paper presents results from a systematic three-dimensional nonlinear finite element analysis on the structural behavior of the eccentric bracing systems subjected to cyclic loadings. A wide scope of structural behaviors explains the horizontal stiffness, hysteretic behaviors, and failure modes of the recentering eccentric bracing system. The accurate results presented here serve as benchmark data for comparison with results obtained using modern experimental testing and alternative theoretical approaches.

Electrochemical Behaviors of Hydroquinone on a Carbon Paste Electrode with Ionic Liquid as Binder

  • Sun, Wei;Jiang, Qiang;Yang, Maoxia;Jiao, Kui
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.915-920
    • /
    • 2008
  • In this paper the electrochemical behaviors of hydroquinone ($H_2Q$) were investigated on a carbon paste electrode using room temperature ionic liquid N-butylpyridinium hexafluorophosphate ($BPPF_6$) as binder (ILCPE) and further applied to $H_2Q$ determination. In pH 2.5 phosphate buffer solution (PBS), the electrochemical response of H2Q was greatly improved on the IL-CPE with a pair of well-defined quasi-reversible redox peaks appeared, which was attributed to the electrocatalytic activity of IL-CPE to the $H_2Q$. The redox peak potentials were located at 0.340 V (Epa) and 0.240 V (Epc) (vs. the saturated calomel electrode, SCE), respectively. The formal potential ($E^0$') was calculated as 0.290 V and the peak-to-peak separation (${\Delta}E_p$) was 0.100 V. The electrochemical parameters of $H_2Q$ on the IL-CPE were further calculated by cyclic voltammetry. Under the selected conditions the anodic peak current was linear with $H_2Q$ concentration over the range from $5.0\;{{\times}}\;10^{-6}$ to $5.0\;{\times}\;10^{-3}\;mol\;L^{-1}$ with the detection limit as $2.5\;{\times}\;10^{-6}\;mol\;L^{-1}$ (3$\sigma$ ) by cyclic voltammetry. The proposed method was successful applied to determination of $H_2Q$ content in a synthetic wastewater sample without the interferences of commonly coexisting substances.

A Study on the Shear Behaviors of Geosynthetic-soil Interface in the Waste Landfill Site (폐기물 매립장 차수시설 접촉면 전단특성에 관한 연구)

  • Park, Inn-Joon;Kwak, Chang-Won;Park, Jum-Bum;Cho, Jun-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.45-54
    • /
    • 2012
  • Various geosynthetics are widely applied to civil structures and waste landfill site for reinforcement and water resistance. The use of geosynthetics inevitably involves the coupled behaviors of different materials which include large displacement and strain-softening behaviors, etc. In this study, the effect of chemical element in the leachate on the interface shear strength under the cyclic loading condition was analyzed. The Multi-purpose Interface Apparatus (M-PIA) has been modified and cyclic direct shear tests have been performed. The submerging period of each specimen is 200 days. Additionally, the Field-Emission Scanning Electronic Microscopy (FIB) analysis has been also performed to induce the reason of the variation of disturbance function and verify the hypothesis on the decay-proof ability of geosynthetics. Consequently, the charateristics of chemical degradation of geosynthetic-soil interface are verified and the variation of the disturbance function is mainly caused by the different type of soil mineral decay, based on the FIB results.

Experimental Study on the Similitude of Small-Scale Models in Cyclic Lateral Behaviors of RC Shear Wall Subassemblages (RC벽식 부분구조의 반복 횡하중 거동에서의 축소모델 상사성 실험연구)

  • Lee, Han-Seon;Cho, Chang-Seok;Lee, Sang-Ho;Oh, Sang-Hoon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.805-816
    • /
    • 2010
  • For earthquake simulation test it is essential to make sure the similitude in behaviors between the full scale prototype and the reduced scale model. This paper presents the test results obtained through the cyclic lateral-force test, on two-story RC wall subassemblages. A lower 2-story portion of the prototype structure was selected as subassemblages. The global behavior such as the strength and ductility, and the local behavior such as flexural, shear and uplift deformation were measured. The test results of the 3 : 5 scale specimens representing the prototype were compared with those of 1 : 7 scale models. Two types of subassemblages were used: One with lintel beams and one without lintel beams. The comparison shows that 1 : 7 scale model simulated in general successfully the global and local behaviors of the prototype.