• Title/Summary/Keyword: cyclic aggregate

Search Result 38, Processing Time 0.02 seconds

Flexural behavior of reinforced lightweight concrete beams under reversed cyclic loading

  • Chien, Li-Kai;Kuo, Yi-Hao;Huang, Chung-Ho;Chen, How-Ji;Cheng, Ping-Hu
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.559-572
    • /
    • 2014
  • This paper presents the results of an experimental investigation on the flexural behavior of doubly reinforced lightweight concrete (R.L.C.) beams tested under cyclic loading. A total of 20 beam specimens were tested. Test results are presented in terms of ductility index, the degradation of strength and stiffness, and energy dissipation. The flexural properties of R.L.C. beam were compared to those of normal concrete (R.C.) beams. Test results show that R.L.C. beam with low and medium concrete strength (20, 40MPa) performed displacement ductility similar to the R.C. beam. The ductility can be improved by enhancing the concrete strength or decreasing the tension reinforcement ratio. Using lightweight aggregate in concrete is advantageous to the dynamic stiffness of R.L.C. beam. Enhancement of concrete strength and increase of reinforcement ratio will lead to increase of the stiffness degradation of beam. The energy dissipation of R.L.C beam, similar to R.C. beam, increase with the increase of tension reinforcement ratio. The energy dissipation of unit load cycle for smaller tension reinforcement ratio is relatively less than that of beam with higher reinforcement ratio.

Effect of the Use of Recycled Coarse Aggregate with the size of 5~13mm on the Fundamental Properties of the Concrete (5~13 mm 순환 굵은 골재 혼합 사용이 콘크리트의 기초적 특성에 미치는 영향)

  • Kang, Byeong-Hoe;Jung, Sang-Woon;Zhao, Yang;Hwang, Jin-Guang;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.19-20
    • /
    • 2013
  • Consider about aggregate's price, coarse aggregates from 13 to 25mm were widely used in ready mixed concrete company. But if only use 13 to 25mm aggregates in the concrete, gap grading problem would be occurred. When recycled aggregates from 13 to 25mm was used, continuous grading would increase the durability and strength for the concrete, meanwhile the construction waste materials would also be reused. In this paper, 5-13mm recycled aggregates was utilized, to analyse the fundamental properties for concrete, strength has been tested to evaluate the quality and reusing effect of the recycled materials.

  • PDF

A parametric study of the meso-scale modelling of concrete subjected to cyclic compression

  • Rempling, Rasmus;Grassl, Peter
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.359-373
    • /
    • 2008
  • The present parametric study deals with the meso-scale modelling of concrete subjected to cyclic compression, which exhibits hysteresis loops during unloading and reloading. Concrete is idealised as a two-dimensional three-phase composite made of aggregates, mortar and interfacial transition zones (ITZs). The meso-scale modelling approach relies on the hypothesis that the hysteresis loops are caused by localised permanent displacements, which result in nonlinear fracture processes during unloading and reloading. A parametric study is carried out to investigate how aggregate density and size, amount of permanent displacements in the ITZ and the mortar, and the ITZ strength influence the hysteresis loops obtained with the meso-scale modelling approach.

Evaluation of Engineering Characteristics of Aggregate Base Materials and Developing the Empirical Correlation Model (입도조정기층 재료의 공학적 특성 평가 및 경험적 상관모형 개발)

  • Kweon, Gi-Chul;Lee, Seung-Jun;Lee, Ung-Se
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.115-121
    • /
    • 2010
  • To evaluate the engineering characteristics of aggregate base materials, cyclic triaxial, CBR and permeability tests were performed for 15 samples. The CBR values of aggregate base materials have wide range from 32 to 110(average 81) and the amount of swelling in submerged conditions has below 0.04mm. The Modulus of aggregate base materials were significantly affected by volumetric stress, linear volumetric model was best for fitting. The modulus of aggregate base materials were determined within range of 100MPa~600MPa, 80~270 and 0.1~0.6 for model coefficient $k_1$ and $k_2$ respectively. The empirical correlation model was suggested that prediction the modulus from the basic properties obtained from particle size distribution test and compaction test. The coefficient of determination of the proposed correlation model was 0.423 for model coefficient $k_1$, 0.920 for model coefficient $k_2$ and 0.872 for modulus with stress level.

Development of Optimal Binder for Recycling Cold Asphalt Mixture (재활용 상온아스콘 혼합물의 최적 결합재 개발)

  • Hong, In Kwon;Jeon, Gil Song;Yang, Chang Bae;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.409-413
    • /
    • 2014
  • This study was carried out to design the optimum mixing ratio of aggregate, cyclic aggregate, and binder (moisture, emulsified asphalt, and emulsion type additives) and produce recycling cold asphalt paving mixture satisfying site work standard. The cyclic aggregate satisfying KS F 2572 was collected from waste asphalt by adequate processing. As the moisture content increased, the shearing strength was decreased. The maximum marshall stability was shown at the 3.0 wt% moisture content. So the optimum moisture content was 3.0 wt%. The marshall stability and flow value with the amount of emulsified asphalt was satisfied in the range of 0.5~2.5 wt%, and the porosity was satisfied in the range of 0.7~2.5 wt%. So the optimum amount of emulsified asphalt was 1.6 wt%. The optimum amount of emulsion type additive was 0.1 wt% in the light of marshall stability and degree of saturation of recycling cold asphalt mixture.

Shear behavior of composite frame inner joints of SRRC column-steel beam subjected to cyclic loading

  • Ma, Hui;Li, Sanzhi;Li, Zhe;Liu, Yunhe;Dong, Jing;Zhang, Peng
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, cyclic loading tests on composite frame inner joints of steel-reinforced recycled concrete (SRRC) column-steel beam were conducted. The main objective of the test was to obtain the shear behavior and analyze the shear strength of the joints. The main design parameters in the test were recycled coarse aggregate (RCA) replacement percentage and axial compression ratio. The failure process, failure modes, hysteresis curves and strain characteristics of the joints were obtained, and the influences of design parameters on the shear strength of the joints have been also analysed in detail. Results show that the failure modes of the joints area are typical shear failure. The shear bearing capacity of the joints maximally decreased by 10.07% with the increase in the RCA replacement percentage, whereas the shear bearing capacity of the joints maximally increased by 16.6% with the increase in the axial compression ratio. A specific strain analysis suggests that the shear bearing capacity of the joints was mainly provided by the three shear elements of the recycled aggregate concrete (RAC) diagonal compression strut, steel webs and stirrups of the joint area. According to the shear mechanism and test results, the calculation formulas of the shear bearing capacity of the three main shear elements were deduced separately. Thus, the calculation model of the shear bearing capacity of the composite joints considering the adverse effects of the RCA replacement percentage was established through a superposition method. The calculated values of shear strength based on the calculation model were in good agreement with the test values. It indicates that the calculation method in this study can reasonably predict the shear bearing capacity of the composite frame inner joints of SRRC column-steel beam.

Experimental study on fracture behavior of SCC pavement slab containing crumb rubber under cyclic loading

  • Wang, Jiajia;Chen, Xudong;Wu, Chaoguo;Shi, Zhenxiang;Cheng, Xiyuan
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.47-57
    • /
    • 2022
  • The increase in waste tires has brought serious environmental problems. Using waste tires rubber particles as aggregate in concrete can reduce pollution and decrease the usage of natural aggregate. The paper describes an investigation on flexural bearing capacity of self-compacting concrete (SCC) pavement slabs containing crumb rubber. Cyclic loading tests with different stress ratios and loading frequencies are carried out on SCC pavement slabs containing crumb rubber. Based on Paris Law and test data, the fatigue life of SCC pavement slab containing crumb rubber is discussed, and a revised mathematical model is established to predict the fatigue life of SCC pavement slab containing crumb rubber. The model applies to different stress ratios and loading frequencies. The fatigue life of SCC pavement slab containing crumb rubber is affected by the stress ratio and loading frequency. The fatigue life increases with the increase of stress ratio and loading frequency. Real-time acoustic emission (AE) signals in the SCC pavement slab containing crumb rubber under cyclic loading are measured, and the characteristics of crack propagation in the SCC pavement slab containing crumb rubber under different stress ratios and loading frequencies are compared. The AE signals provide abundant information of fracture process zone and crack propagation. The variation of AE ringing count, energy and b-value show that the fracture process of SCC pavement slab containing crumb rubber is divided into three stages.

Evaluation of Resilient Modulus Models for Recycled Materials (재활용 도로재료의 회복탄성계수 산정을 위한 적용 모델의 평가)

  • Son, Young-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.51-57
    • /
    • 2010
  • Many models have been used to represent the effects of confining stress, bulk stress, and shear stress on the value of the resilient modulus (Mr). This study was conducted to estimate Mr of the recycled materials such as recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) through the repeated load cyclic test. Also, two models were applied to estimation of Mr for comparing between measured Mr values and predicted Mr values. The first model (A-model) can provide a quick and easy estimation of the Mr based on the bulk stress, while the second model (N-model) includes not only the bulk stress but also the shear stress. Statistical analysis indicated that all results using the both of models are significant at a 95 % confidence level. Therefore, the both of models could be used as an effective prediction model of Mr for RCA and RAP. Especially, the Model 2 including the parameters of the bulk stress and the shear stress could give more reliable estimation at the high range of Mr values.

An Indexing Technique for Range Sum Queries in Spatio - Temporal Databases (시공간 데이타베이스에서 영역 합 질의를 위한 색인 기법)

  • Cho Hyung-Ju;Choi Yong-Jin;Min Jun-Ki;Chung Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.32 no.2
    • /
    • pp.129-141
    • /
    • 2005
  • Although spatio-temporal databases have received considerable attention recently, there has been little work on processing range sum queries on the historical records of moving objects despite their importance. Since to answer range sum queries, the direct access to a huge amount of data incurs prohibitive computation cost, materialization techniques based on existing index structures are recently suggested. A simple but effective solution is to apply the materialization technique to the MVR-tree known as the most efficient structure for window queries with spatio-temporal conditions. However, the MVR-tree has a difficulty in maintaining pre-aggregated results inside its internal nodes due to cyclic paths between nodes. Aggregate structures based on other index structures such as the HR-tree and the 3DR-tree do not provide satisfactory query performance. In this paper, we propose a new indexing technique called the Adaptive Partitioned Aggregate R-Tree (APART) and query processing algorithms to efficiently process range sum queries in many situations. Experimental results show that the performance of the APART is typically above 2 times better than existing aggregate structures in a wide range of scenarios.

Ductility of High-Strength Lightweight Concrete Members under Reversed Cyclic Loading (반복하중하에서의 초고강도 경량콘크리트의 연성)

  • ;;Ghosh, S. K.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.54-59
    • /
    • 1991
  • This experimental investigation was aimed at gathering information on the flexural properties, including ductility, of high-strength lightweight concrete members(concrete with a dry unit weight of approximately 1.85t/$\textrm{m}^3$ and with compressive strength approaching 630kg/$\textrm{cm}^2$ at 56days) under reversed cyclic loading. Two sets of six specimens each were manufactured using lightweght aggregate concrete having compressive strength of 350kg/$\textrm{cm}^2$ at 28days and 630kg/$\textrm{cm}^2$ at 56days. The test variables were the concrete strength, the amount of longitudinal reinforcement, and the spacing of ties. The test results, including hysteretic load-deflection curves, for the specimens representing columns under zero axial load are reported in this paper.

  • PDF