• 제목/요약/키워드: cycleSolid

검색결과 363건 처리시간 0.034초

리튬 폴리머 전지용 정극활물질 $LiFePO_4$$LiM_xFe_{1-x}PO_4$의 전기화학적 특성 (Electrochemical Properties of $LiFePO_4$ and $LiM_xFe_{1-x}PO_4$ Cathode Materials for Lithium Polymer Batteries)

  • 조흥관;김은미;박경희;구할본;박복기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.133-133
    • /
    • 2009
  • Phospho-olivine $LiFePO_4$ and $LiTi_{0.1}Fe_{0.9}PO_4$ cathode materials were prepared by the solid-state reaction. To improve conductivity we carried out electrochemical performance of $Ti^{2+}$ doped $LiFePO_4$. The $Ti^{2+}$ doped $LiFePO_4$ started 3.36 V of flat voltage on discharge curve and showed a gentle decline in the curve compared to undoped $LiFePO_4$ without great changes of capacity. And so, we could achieve to improve electrochemical performance as reversible, cycle life. Similarly, $LiFePO_4$ doping with $Ti^{2+}$ was showed the effect of dopant which was obtained the improved discharge capacity as 140 mAh/g and good cycling performance.

  • PDF

고온초전도 시스템의 새로운 냉각기술 (New Cooling Techniques of High Tc Superconductor Systems)

  • 장호명
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.7-11
    • /
    • 1999
  • The recent progress in new cooling techniques of the high Tc superconductor(HTS) systems is reported and discussed with some practical examples. At the beginning stage of the HTS development in research laboratories, liquid nitrogen(LN$_2$) is the standard medium for an effective cooling. The success of HTS in many different application areas, however, has required a variety of need in the cooling temperature and the cooling capacity with specific design restrictions. While the utilization of alternative liquid cryogens such as liquid neon (LNe) or liquid hydrogen (LH$_2$) has been tired in some of them, even solid cryogens such as solid nitrogen (SN$_2$) or solid hydrogen (SH$_2$) may be another option in special applications. The gaseous helium cooled by a cryogenic refrigerator has also been a good candidate in many cases. One of the best cooling methods for the HTS is the direct conduction-cooling by a closed-cycle refrigerator with no cryogen at all. The refrigeration may be based on Joul-Thomson, Brayton, Stirling, Gifford-McMahon, or pulse tube cycles. The pros and cons of the newly proposed cooling methods are described and some significant design issues are presented.

  • PDF

Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

  • Welaya, Yousri M.A.;Mosleh, M.;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.529-545
    • /
    • 2013
  • Strong restrictions on emissions from marine power plants (particularly $SO_x$, $NO_x$) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

The Surface Modification of Electrode with Solid Electrolyte Interphase for Hybrid Supercapacitor

  • Choi, Min-Geun;Kang, Soo-Bin;Yoon, Jung Rag;Lee, Byung Gwan;Jeong, Dae-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1102-1106
    • /
    • 2015
  • A hybrid supercapacitor (HS) is an energy storage device used to enhance the low weight energy density (Wh/kg) of a supercapacitor. On the other hand, a sudden decrease in capacity has been pointed out as a reliability problem after many charge/discharge cycles. The reliability problem of a HS affects the early aging process. In this study, the capacity performance of a HS was observed after charge/discharge. For detailed analysis of the initial charge/discharge cycles, the charge and discharge curve was measured at a low current density. In addition, a solid electrolyte interphase (SEI) layer was confirmed after the charge/discharge. A HC composed of a lithium titanate (LTO) anode and active carbon cathode was used. The charge/discharge efficiency of the first cycle was lower than the late cycles and the charge/discharge rate was also lower. This behavior was induced by SEI layer formation, which consumed Li ions in the LTO lattice. The formation of a SEI layer after the charge/discharge cycles was confirmed using a range of analysis techniques.

The characteristics of polymer electrolyte for lithium polymer battery

  • Park Soo-Gil;Park Jong-Eun;Lee Ju-Seong
    • 전기화학회지
    • /
    • 제2권1호
    • /
    • pp.1-4
    • /
    • 1999
  • 리튬이차전지는 충방전의 반복 동안의 액체전해질과 리튬음극과의 반응으로 수지상결정의 성장으로 리튬이 차전지에 있어서 안전성의 문제를 일으킨다. 고분자 전해질은 수지상 결정 형성을 억제하며 전해질에 성능을 향상시키는 연구가 활발히 진행중이다. 본 연구에서는 겔 전해질에 $Al_2O_3$를 첨가하여 전해질의 표면구조와 임피던스 특성을 조사하였다. 리튬이온의 수율은 $10wt\%\;PAN-Al_2O_3$ 전해질에 5mV의 전압을 인가했을 때 0.29였고 전해질의 이온전도도는 상온에서$2.3\times10^{-4} S/cm$였다. 무기 충진제가 고분자 전해질에 첨가되었을 때 이온전도도 및 이온수율은 무기 충진제가 첨가되지 않은 것보다 높게 나타났다.

Pulse-Sequence Analysis of Discharges in Air, Liquid and Solid Insulating Materials

  • Suwayno, Suwayno;Mizutani, Teruyoshi
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권4호
    • /
    • pp.528-533
    • /
    • 2006
  • Electrical discharges may occur in gas, liquid as well as solid insulating materials. This paper describes the investigation results on the discharges in air, silicone oil and low density polyethylene (LDPE) using needle plane electrode system under AC voltage of 50 Hz. The experimental results showed that for discharge in air (corona), discharge pulses were concentrated around the peak of applied voltage at negative half cycle. For silicone oil positive as well as negative discharges were observed which concentrated around the peak of applied voltage. The positive pulse number was smaller but the magnitude was higher than that of negative discharge. Discharges in void took place at wider range of phase of applied voltage. The unbalance in pulse number and magnitude similar to that of oil discharges were observed. For electrical treeing in LDPE, the discharges were spread before the zero cross of the applied voltage up to the peak at both positive and negative half cycles. The discharge pulse sequence analysis indicated that the PD occurrence in air, oil and void were strongly affected by the magnitude of applied voltage. However, for electrical treeing it was observed that the discharge occurrence was strongly affected by the time derivative of the applied voltage (dv/dt).

In-situ 스퍼터링을 이용한 마이크로 박막 전지의 제작 및 전지 특성 평가 (Fabrication and Electrochemical Characterization of All Solid State Thin Film Micro-Battery by in-situ sputtering)

  • 전은정;신영화;남상철;조원일;손봉희;윤영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.159-162
    • /
    • 1999
  • All solid state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of Li/LiPON/V$_2$O$\sub$5/Pt. The vanadium oxide thin films were formed by d.c. reactive sputtering on Pt current collector. After deposition of vanadium oxide films, in-situ growths of lithium phosphorus oxynitride film were conducted by r.f. sputtering of Li$_3$PO$_4$ target in mixture gas of N$_2$ and O$_2$. The pure metal lithium film was deposited by thermal evaporation on thin film LiPON electrolyte. The cell capacity was about 45${\mu}$Ah/$\textrm{cm}^2$ $\mu\textrm{m}$ after 200 cycle. No appreciable degradation of the cell capacity could be observed after 50 cycles .

  • PDF

Solubility of Trivalent Am, Eu, and Sm in the Synthetic KAERI Underground Research Tunnel Groundwater

  • Hee-Kyung Kim;Hye-Ryun Cho;Wansik Cha
    • 방사성폐기물학회지
    • /
    • 제22권3호
    • /
    • pp.237-249
    • /
    • 2024
  • The initial radionuclide migration quantity depends on the total amount of solubilized species. Geochemical modeling based on a thermodynamic database (TDB) has been employed to assess the solubility of radionuclides. It is necessary to evaluate whether the TDB describes the domestic repository conditions appropriately. An effective way to validate the TDB-based modeling results is through direct comparisons with experimentally measured values under the conditions of interest. Here, the solubilities of trivalent Sm, Eu, and Am were measured in synthetic KURT-DB3 groundwater (SynDB3) and compared with modeling results based on ThermoChimie TDB. Ln2(CO3)3·xH2O(cr) (Ln = Sm, Eu) solids were introduced into the Syn-DB3 and dissolved Sm and Eu concentrations were monitored over 223 days. X-ray diffraction analysis confirmed that the crystallinity of the solid compounds was maintained throughout the experiments. The dissolved Sm and Eu concentrations at equilibrium were close to the predicted solubilities of Sm2(CO3)3(s) and Eu2(CO3)3(s) based on the ThermoChimie TDB. The Am solubility measured under oversaturated conditions was comparable to the measured Eu concentrations, although they were measured under different experimental settings. More experimental data are needed for Am-carbonate solid systems with careful characterization of the solid phases to better evaluate Am solubility in domestic groundwater conditions.

타원접촉 EHL 상태에서의 접촉피로수명 예측 (Contact Fatigue Life Prediction under Elliptical Elastohydrodynamic Lubrication)

  • 김태완;이상돈;구영필;조용주
    • Tribology and Lubricants
    • /
    • 제22권6호
    • /
    • pp.320-328
    • /
    • 2006
  • In this study, the simulation of rolling contact fatigue based on stress analysis is conducted under Elastohydrodynamic Lubrication state. To predict a crack initiation life accurately, it is necessary to calculate contact stress and subsurface stresses accurately. Contact stresses are obtained by contact analysis of a semi-infinile solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. And a numerical algorithm using Newton-Rapson method was constructed to calculate the Elastohydrodynamic lubrication pressure. Based on these stress values, several multiaxial high-cycle fatigue criteria are used and the critical loads corresponding to fatigue limits are calculated.

저압주조에 의한 자동차 Al Wheel의 제조(I) : 유동 및 응고해석 (Production of Automobile Al Wheel by Low-Pressure Die Casting (I) : Flow and Solidification Simulation)

  • 추인호;류성곤;최정길
    • 한국주조공학회지
    • /
    • 제18권6호
    • /
    • pp.578-585
    • /
    • 1998
  • A multi-purpose code MAGMA was employed for mold design and process control in producing Al wheel by lowpressure die casting. Three-dimensional solid modeling was followed by mesh generation of casting and molds(top, bottom and side). The simulation of stability of casting cycle time, mold filling simulation with pressure variation from P1 to P2, solidification simulation by solidification time and feeding criteria, and temperature distribution of molds during processes were studied in this research. The thermal stability of molds was attained after 5 cycles when molds were preheated at $400^{\circ}C$. The pressure increase from P1 to P2 for mold filling was evaluated as slightly higher, and 6 seconds were taken for the mold filling. The cycle time was believed to be designed properly judged from the solidification time of casting and open/close time of molds.

  • PDF