• Title/Summary/Keyword: cycle count

Search Result 135, Processing Time 0.027 seconds

Effects of Conversion of Infertility Treatment on Semen Quality (불임시술의 전환이 정맥상태에 미치는 영향)

  • Kim, Yong-Jin;Jee, Byung-Chul;Suh, Chang-Suk;Kim, Sook-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.3
    • /
    • pp.159-166
    • /
    • 2007
  • Objective: To investigate whether semen parameters in infertile couples who undergone intrauterine insemination (IUI) change in the subsequent IUI cycle and the subsequent in vitro fertilization (IVF) cycle. Methods: Fifty-three infertile couples who had failed to become pregnant after the first IUI cycle with computer-assisted semen analysis (CASA) were included. After the first IUI, thirty-eight couples underwent the second IUI (Group 1), and fifteen underwent IVF-ET procedure (Group 2). All semen parameters including semen volume, concentration, motility and total motile sperm count were analyzed in the second IUI or IVF-ET procedure for comparison with the result of first IUI. Results: There were no significant differences in husband age, interval between the first and second procedure and cause of infertility. In Group 1, only sperm motility at the time of the latter IUI was significantly decreased when compared to the former IUI irrespective of the first semen parameters. In Group 2, sperm concentration, motility and total motile sperm count at the time of subsequent IVF were lower than the former IUI. By sub-analyses of Group 2, in the group of optimal semen parameter at IUI cycle, sperm concentration and total motile sperm count at the time of subsequent IVF were lower than the former IUI, while in the group of suboptimal semen parameter at IUI cycle, only sperm motility at the time of subsequent IVF were lower than the former IUI. Conclusion: The semen parameters in couples converted to IVF cycle were more adversely affected than those remained in IUI cycle. Further study on psychological stress should be necessary to explain the reason.

A Novel Duty Cycle Based Cross Layer Model for Energy Efficient Routing in IWSN Based IoT Application

  • Singh, Ghanshyam;Joshi, Pallavi;Raghuvanshi, Ajay Singh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1849-1876
    • /
    • 2022
  • Wireless Sensor Network (WSN) is considered as an integral part of the Internet of Things (IoT) for collecting real-time data from the site having many applications in industry 4.0 and smart cities. The task of nodes is to sense the environment and send the relevant information over the internet. Though this task seems very straightforward but it is vulnerable to certain issues like energy consumption, delay, throughput, etc. To efficiently address these issues, this work develops a cross-layer model for the optimization between MAC and the Network layer of the OSI model for WSN. A high value of duty cycle for nodes is selected to control the delay and further enhances data transmission reliability. A node measurement prediction system based on the Kalman filter has been introduced, which uses the constraint based on covariance value to decide the scheduling scheme of the nodes. The concept of duty cycle for node scheduling is employed with a greedy data forwarding scheme. The proposed Duty Cycle-based Greedy Routing (DCGR) scheme aims to minimize the hop count, thereby mitigating the energy consumption rate. The proposed algorithm is tested using a real-world wastewater treatment dataset. The proposed method marks an 87.5% increase in the energy efficiency and reduction in the network latency by 61% when validated with other similar pre-existing schemes.

Effect of Repeated Freeze-Thaw Cycles on Beef Quality and Safety

  • Rahman, Mohammad Hafizur;Hossain, Mohammad Mujaffar;Rahman, Syed Mohammad Ehsanur;Hashem, Mohammad Abul;Oh, Deog-Hwan
    • Food Science of Animal Resources
    • /
    • v.34 no.4
    • /
    • pp.482-495
    • /
    • 2014
  • The objectives of this study were to know the effect of repeated freeze-thaw cycles of beef on the sensory, physicochemical quality and microbiological assessment. The effects of three successive freeze-thaw cycles on beef forelimb were investigated comparing with unfrozen fresh beef for 75 d by keeping at $-20{\pm}1^{\circ}C$. The freeze-thaw cycles were subjected to three thawing methods and carried out to know the best one. As the number of freeze-thaw cycles increased color and odor declined significantly before cook within the cycles and tenderness, overall acceptability also declined among the cycles after cook by thawing methods. The thawing loss increased and dripping loss decreased significantly (p<0.05). Water holding capacity (WHC) increased (p<0.05) until two cycles and then decreased. Cooking loss increased in cycle 1 and 3, but decreased in cycle 2. pH decreased significantly (p<0.05) among the cycles. Moreover, drip loss, cooking loss and WHC were affected (p<0.05) by thawing methods within the cycles. 2-Thiobarbituric acid (TBARS) value increased (p<0.05) gradually within the cycles and among the cycles by thawing methods. Total viable bacteria, total coliform and total yeast-mould count decreased significantly (p<0.05) within and among the cycles in comparison to the initial count in repeated freeze-thaw cycles. As a result, repeated freeze-thaw cycles affected the sensory, physicochemical and microbiological quality of beef, causing the deterioration of beef quality, but improved the microbiological quality. Although repeated freeze-thaw cycles did not affect much on beef quality and safety but it may be concluded that repeated freeze and thaw should be minimized in terms of beef color for commercial value and WHC and tenderness/juiciness for eating quality.

Pregnancy Rate by Intrauterine Insemination (IUI) with Controlled Ovarian Hyperstimulation (COH) (자궁강내 인공수정에 의한 임신율)

  • Hong, Jeong-Eui;Lee, Ji-Sam
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.2
    • /
    • pp.217-231
    • /
    • 1998
  • The effectiveness of intrauterine insemination (IUI) combined with controlled ovanan hyperstimulation (COH) in the treatment of infertility with various etiologies was compared in a total of 152 cycles. Patients received a maximum of three IUI cycles for the treatment. Severe male ($<2\times10^6$ motile sperm) or age factor (> 39 y) patients were excluded in this study. Pregnancy was classified as clinical if a gestational sac was seen on ultrasound. The overall clinical pregnancy rate was 7.9% per cycle (12/152) and 9.7% per patient (12/124). The pregnancy rates were 0% in unstimulated natural (0/18), 7.5% in CC (3/40), 8.2% in CC+hMG (4/49), 5.9% in GnRH-a ultrashort (1/17), 5.9% in GnRH-a long (1/17) and 27.3% in dual suppression cycles (3/11), respectively. The pregnancy rate was higher in dual suppression cycle than other stimulated cycles, but this was not significant. The multiple pregnancy rates were 25.0% (2 twins and 1 triplet). No patient developed ovarian hyperstimulation. Abortion rates were 66.7% in CC (2/3) and 100% in ultrashort cycles (1/1). The livebirth rate was 5.9% per cycle (9/152) and 7.3% per patient (9/124). There were no differences in age, duration of infertility, follicle size, total ampules of gonadotropins and days of stimulation between pregnant and non-pregnant groups. However, significant(P<0.05) differences were observed in the level of estradiol $(E_2)$ on the day of hCG injection ($3,266.6{\pm}214.2$ vs $2,202.7{\pm}139.4$ pg/ml) and total motile sperm count ($212.1{\pm}63.4$ vs $105.1{\pm}9.9\times10^6$) between pregnant group and non-pregnant group. These results suggest that IUI combined with successful ovarian stimulation tends to improve the chance of pregnancy as compared to IUI without COH and a total motile sperm count may be considered predictive of the success for pregnancy.

  • PDF

Design of Zigbee based Portable ECG monitoring system (지그비 기반의 휴대형 심전도 모니터링 시스템 설계)

  • Hong, Joo-Hyun;Kim, Nam-Jin;Cha, Eun-Jong;Lee, Tae-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.51-53
    • /
    • 2006
  • This paper proposes a portable ECG monitoring system, which integrates uptodate PDA and RF communication technology. The aim of the study is to acquire the subject's biomedical signal without any constraint. It has two types of transmission mode, which are total signal transmission mode and HR(heart rate)/SC(step count) transmission mode. In audition, wireless communication technology uses Zigbee Wireless PAN and can work in low-power mode, which is one of the advantages of ZiBbee communication technology. The developed system is composed of a transmitter and a receiver. The transmitter has three-axial acceleration sensor. ECG amplifier and Zigbee communication controller. In total signal transmission mode, it can send data 50 packets per second whose transmission speed corresponds to 300 ECG samples and 60 acceleration samples. In HR/SG transmission mode, it can calculate heart rate from EEG data with 216 samples per second and step count from acceleration data and send a packet every cardiac cycle. The receiver forwards the received data to PDA, where the data can be stored and displayed. Therefore, the developed device enables to continuous monitoring for Activities of Daily Living(ADL). Also, this method will reduce medical costs in the aged society.

  • PDF

Application of Particle Counter in Water Treatment Process (정수처리공정에서의 입자분석 적용방안)

  • Shin, Sang-Hee;Jeon, Hyun-Sook;Lee, Chan-Hyung;Bae, Gi-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.337-342
    • /
    • 2013
  • The particle counter compared with the turbidimeter provides good precision and sensitivity and can get the characteristics of particulates effectively. The purpose of this study is to provide the application of particle counter in sand and activated carbon filters. The particle count by size could be more easily sense when the water quality is changed by the influent of high turbidity or algae. We could decide the optimal backwashing cycles and detect the efficiencies of filters by monitoring the total particle count of effluent in sand and activated carbon filters.

Design of An Application Specific Instruction-set Processor for Embedded DSP Applications (내장형 신호처리를 위한 응용분야 전용 프로세서의 설계)

  • Lee, Sung-Won;Choi, Hoon;Park, In-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.228-231
    • /
    • 1999
  • This paper describes the design and implementation of an application specific instruction-set processor developed for embedded DSP applications. The instruction-set has an uniform size of 16 bits, and supports 3 types of instructions: Primitive, Complex, and Specific. To reduce code size and cycle count we introduce complex instructions that can be selected according to the application under consideration, which leads to 50% code size reduction maximally. The processor has two independent data memories to double the data throughput and the address space. The processor is synthesized by 0.6$\mu$m single-poly double-metal technology. Critical path simulation shows that the maximum frequency is 110MHz and total gate count is 132, 000.

  • PDF

Design and Optimization of Full Comparator Based on Quantum-Dot Cellular Automata

  • Hayati, Mohsen;Rezaei, Abbas
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.284-287
    • /
    • 2012
  • Quantum-dot cellular automata (QCA) is one of the few alternative computing platforms that has the potential to be a promising technology because of higher speed, smaller size, and lower power consumption in comparison with CMOS technology. This letter proposes an optimized full comparator for implementation in QCA. The proposed design is compared with previous works in terms of complexity, area, and delay. In comparison with the best previous full comparator, our design has 64% and 85% improvement in cell count and area, respectively. Also, it is implemented with only one clock cycle. The obtained results show that our full comparator is more efficient in terms of cell count, complexity, area, and delay compared to the previous designs. Therefore, this structure can be simply used in designing QCA-based circuits.

AM600: A New Look at the Nuclear Steam Cycle

  • Field, Robert M.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.621-631
    • /
    • 2017
  • Many developing countries considering the introduction of nuclear power find that large-scale reactor plants in the range of 1,000 MWe to 1,600 MWe are not grid appropriate for their current circumstance. By contrast, small modular reactors are generally too small to make significant contributions toward rapidly growing electricity demand and to date have not been demonstrated. This paper proposes a radically simplified re-design for the nuclear steam cycle for a medium-sized reactor plant in the range of 600 MWe. Historically, balance of plant designs for units of this size have emphasized reliability and efficiency. It will be demonstrated here that advances over the past 50 years in component design, materials, and fabrication techniques allow both of these goals to be met with a less complex design. A disciplined approach to reduce component count will result in substantial benefits in the life cycle cost of the units. Specifically, fabrication, transportation, construction, operations, and maintenance costs and expenses can all see significant reductions. In addition, the design described here can also be expected to significantly reduce both construction duration and operational requirements for maintenance and inspections.

The Seasonal Microbiological Quality Assessment of Kimbap(seaweed roll) Production flow in Foodservice facilities for Univ. students - HACCP model - (대학생 대상 급식시설의 김밥 생산과정에 따른 계절별 미생물적 품질평가)

  • 이혜상;류승연
    • Korean journal of food and cookery science
    • /
    • v.14 no.4
    • /
    • pp.367-374
    • /
    • 1998
  • The purpose of this study was to evaluate the microbiological quality of, and to assure the hygienic safety of, the kimbap production in the university foodservice facilities in accordance with the HACCP (Hazard Analysis Critical Control Point) Program. The time-temperature relationship and the microbiological quality (specifically, total plate count and coliform bacteria count) were assessed to find the critical control point (CCP) during each of the production phases. The average of the daily longest duration time of the kimbap at the facilities was 23.4 hours in summer, while 29.6 hours in winter. In the purchasing phase of the raw materials, the microbiological quality of laver, fish paste, carrot and cucumber in summer was not at an acceptable level according to the standard set by the Natick research center, especially the number of TPC and the coliform level of laver was higher than the threshold level. In the refrigerator storage phase, the temperature of the carrot was 7.4$^{\circ}C$. This temperature is far exceeding the standard so that the microbiological counts was increased by the 2 log cycle during the average storage time of 17 hours or more. In the preparation phase, the temperature of the blanching is too low compared to the standard. In the holding phase before serving, its time-temperature relationship was out of the FDA food code standard both in winter and summer. In the sewing phase, the number of microbiological count was higher than the threshold level in summer while that in winter was up to standard. According to the Harrigan and McCance standard, the number of microbiological count of the utensils was higher than the threshold level in summer while that in winter was up to standard.

  • PDF