• Title/Summary/Keyword: cutting precision

Search Result 1,617, Processing Time 0.045 seconds

A Study on the Precision Cutting Characteristics by the Diamond Tool on the Cutting Distance (다이아몬드 공구의 절삭거리에 따른 정밀가공 특성 연구)

  • Yu, Ki-Hyun;Cheong, Chin-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.127-133
    • /
    • 1998
  • This research intends to gain the sight for the qualitative characteristics of precision cutting by using the CNC lathe with a mono-crystal diamond(MCD) and a poly-crystal diamond(PCD) tool on the cutting distance. In case of an MCD tool, as the cutting distance increases, the surface roughness becomes worse and the standard deviation of surface roughness is small. In case of a PCD tool, as the cutting distance increases, the surface roughness becomes stable with a large standard deviation. The cutting force ratio(Ft/Fn) decreases as the nose radius increases and the decreasing ratio becomes larger for small nose radius.

  • PDF

A Development of the Precision Machine with Vacuum Chuck and a Study on the Characteristics of Oxygen Free Couper (진공척 미세 가공기 개발 및 무산소동 절삭 특성 연구)

  • Kim, Geon-Hee;Kim, Youn-Joong;Kook, Myung-Ho;Lee, Sun-Kyu;Hong, Kweon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.28-33
    • /
    • 2007
  • This paper describes development of low cost precision machine that has a vacuum chuck. This study mainly aims to find out a cutting condition for maintaining optimum surface condition and to examine cutting characteristics of the precision machine that is equipped by diamond bites. The cutting materials is oxygen free copper. Several experiments were carried out to find out the main factors that affect the surface roughness such as principal axis RPM(rotation per minute), feeding speed, and cutting depth. As a result, we obtain The optimum cutting condition of the developed precision machine.

  • PDF

Machining Precision according to the Change of Feedrate when Ball Endmilling of Semisphere Shape (볼 엔드밀에 의한 반구 가공시 이송속도 변화에 따른 가공정밀도)

  • 임채열;우정윤;김종업;왕덕현;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.930-933
    • /
    • 2000
  • Experimental study was conducted for finding the characteristics of machining precision according to the change of feedrate when ball endmilling of semisphere shape. The values of tool deflection and cutting force were measured simultaneously by the systems of eddy-current sensor and dynamometer. The machining precision was analyzed by roundness values, which were deeply relating with tool deflection and forces. the roundness was decreased in down-milling than in up-milling for each feedrate. As the cutting edge is moved to radius direction on the tool path, the tool deflection and the cutting force were seemed to be decreased. As the tool path was moved downward, the values of roundness, cutting force and tool deflection were obtained better ones. When compared the values of roundness, cutting force and tool deflection for different feedrate, the best machining accuracy was obtained at feed rate of 90mm/min in down-milling.

  • PDF

A Study on Ultra-precision Fly-cutting of Aluminum Alloy (알루미늄 합금의 초정밀 플라이커팅에 관한 연구)

  • Park Soon-Sub;Lee Ki-Yong;Kim Hyoung-Mo;Hwang Yeon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.233-234
    • /
    • 2006
  • For the machining of freeform surface, fly cutting is one of the key technology to meet profile accuracy and surface roughness simultaneously. Fly cutting can be applied to manufacturing of optical components with complex profile. In this study aluminum alloy was machined in the process of ultra precision fly cutting and investigated optimum machining conditions in terms of feed-rate, pitch per cycle and depth of cut.

  • PDF

A Study on Characteristics of the Precision Machined Surfaces by AFM Measurement (AFM 측정법에 의한 초정밀 가공면의 특성 평가 연구)

  • Kim, Jong-Kwan;Lee, Gab-Jo;Jung, Jong-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • High speed cutting is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. High speed cutting leaves a plastically deformed layer on the machined surface. This deformed layer affects in various forms to the surface roughness of machined parts such as the dimensional instability, the micro crack. The surface roughness is called surface integrity which is very important in precision cutting. This paper aims to study on the machined surfaces characteristics of aluminum alloy and brass by AFM(Atomic force microscope) measurement. The objective is contribution to ultra- precision cutting by exhibit foundation data of surface roughness and tool wear when parts are cutting with diamond tool at the factory.

Ultra Precision cutting Characteristics for Al 6061 (Al 6061의 초정밀 절삭특성)

  • 박상진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.591-596
    • /
    • 2000
  • The needs of ultra precision machined parts is increase every days. But the experimental data of nonferrous metal is insufficient. The cutting behavior in micro cutting area is different from that of traditional cutting because of the size effect. Al6061 is widely used as optical parts such as LASER reflector's mirror or multimedia instrument. Al6061 opper is machined by ultra precision machine with natural diamond tool. From the experiment and discussion on the cutting force and worked surface roughness as the variable spindle speed, feed rate and depth of cut. As a result, the cutting force increases as the increasing depth of cut, but the worked surface roughness does not increase so much. The surface roughness is good when spindle sped is above 1200rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF

Tool Wear and Cutting Characteristics in the Machining of Die Material using Ceramic Toll (세라믹 공구를 이용한 금형강 가공시 공구마멸과 절삭특성)

  • 손창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.114-118
    • /
    • 1996
  • Evaluation of cutting condition is one of the most important aspect to improve productivity and quality. In this study, the wear and cutting characteristics(cutting force, acoustic emission signal and surface roughness) of ceramic cutting tool for hardened die material(SKD11) were investigated by experiment. Flank wear on relief face of tool was occurred more dominant than crater wear on rake face. Experiments were performed under the various cutting condition.

  • PDF

Wear of Partially Coated Tool in Interrupted Cutting (부분 피복된 HSS 공구의 단속절삭시의 마멸)

  • 김동욱;조용주;지용권;류병진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.67-72
    • /
    • 1994
  • Tool test was conducted to investigate the were process of only flank face TiN coated HSS tool in interrupted cutting for variuos cutting speeds and feed rates. Flank wear was caused by microchipping at the cutting edge. At high cutting speed, the which was formed as a result of diffusion and abrasion lowered cutting edge and influenced flank were. Flank wear due to chipping was little influenced by cutting speed.

  • PDF

금형강의 앤드밀 가공시 동적모델에 의한 절삭력 예측

  • 이기용;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.49-54
    • /
    • 1994
  • A dynamic model for the cutting process in the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model, which uses instantaneous specific cutting force, includes both regenerative effect and penetration effect. The model is verified through comparisons of model predicted cutting force with measured cutting forces obtained from machining experiments.

  • PDF