• Title/Summary/Keyword: cutting pattern analysis

Search Result 85, Processing Time 0.024 seconds

Fashion Design Study by Whole Cut Way (Whole cut에 의한 패션디자인 연구)

  • Park, You Shin
    • Journal of Fashion Business
    • /
    • v.19 no.5
    • /
    • pp.199-212
    • /
    • 2015
  • Environmentally-friendly whole-cut designs can minimize carbon dioxide emissions which are harmful to the earth, and reduce energy, labor force and time in cutting or sewing clothes. The design and way of wearing clothing will be investigated by classifying whole-cut clothing appearing in the history of costume and past traditional outfits such as Drapery, a Pancho, Tunic, or Loincloth. According to the results from the analysis of whole-cut methods applied in design, they were classified as follows: whole-cut, utilizing square-panels as is, pleats, smoking, lip band, origami, cutting way, and subtraction-cutting whole-cut design. The whole-cut design utilizing square panel as it is can minimize the waste of energy and material but can also maximize the possibility of circulation by recycling. In utilizing an all square panel, it broke away from the existing whole-cut in the western pattern, namely, the pattern of clothes clinging to the body, and was found to have new aesthetic value with a new approach. Due to the whole-cut method having a restriction in the use of dart and line cutting in its designing process, there were only designs that did not show the body line, such as designs clinging to the body. Therefore we developed a design similar to those that cling to the body by whole-cut, In addition, the work produced was with high efficiency and variability, which produces simple designs but can be worn in a variety of ways.

High Reliability Design for New Concept Machining Center (신개념 머시닝센터의 신뢰성 향상 설계기술)

  • Lee, Chan-Hong;Kim, Yang-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.894-903
    • /
    • 2011
  • In this paper, the capability index is introduced in order to improve the reliability of new concept machine tools and the method to improve the machine accuracy from the analysis of cutting process, statistical methodology and influence factors are proposed. In addition, the rib structure of bed and column in machine tools is analyzed by using the thermal impact method in order to analogize the rib pattern which has the small thermal deformation under thermal boundary condition. In the analysis of column rib structure, thermal boundary condition is separated to heat conduction and heat transfer to appropriate real boundary condition. Finally, performance chart of bed and column rib structure is provided for designer to estimate each rib pattern and select rib structure appropriating to thermal condition.

Autoregressive Modeling in Orthogonal Cutting of Glass Fiber Reinforced Composites (2차원 GFRC절삭에서 AR모델링에 관한 연구)

  • Gi Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.88-93
    • /
    • 2001
  • This study discusses frequency analysis based on autoregressive (AR) time series model, and process characterization in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The resulting pattern vectors of AR coefficients are then passed to the feature extraction block. Inside the feature extraction block, only those features that are most sensitive to different types of cutting mechanisms are selected. The experimental correlations between the different chip formation mechanisms and AR model coefficients are established.

  • PDF

내장형 절삭력센서와 AE 센서를 이용한 인-프로세스 공구파괴 검출에 관한 연구

  • 최덕기;박동삼;주종남;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.344-348
    • /
    • 1992
  • This paper presents a new methodology for on-line tool breakage detection by sensor fusion concept of an acoustic-emission (AE) sensor. A built-in piezoelectric force sensor was used to measure cutting force instead of a tool dynamometer to preserve the machine tool dynamics. he sensor was inserted in the tool turret housing of an NC lathe. FEM analysis was carried out to locate the most sensitive position for the sensor. When a tool is broken, the explicit changes of signals' pattern take place. A burst-type AE signal increases abruptly. Followingly, a cutting force drops significantly. Therefore a burst of AE signal is used as a triggering signal to inspect the following cutting force. Significant drop of cutting force is utilized to detect tool breakage. The algorithm was implemented in a DSP board for in-process tool breakage detection. The proposed monitoring system was capable of a good applicable tool breakage detection.

Detecting smartphone user habits using sequential pattern analysis

  • Lu, Dang Nhac;Nguyen, Thu Trang;Nguyen, Thi Hau;Nguyen, Ha Nam;Choi, Gyoo Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.20-22
    • /
    • 2015
  • Recently, the study of smart phone user habits has become a highly focused topic due to the rapid growth of the smart phone market. Indeed, sequential pattern analysis methods were efficiently used for web-based user habit mining long time ago. However, by means of simulations, it has been observed that these methods might fail for smart phone-based user habit mining. In this paper, we propose a novel approach that leads to a considerably increased performance of the traditional sequential pattern analysis methods by reasonably cutting off each chronological sequence of user logs on a device into shorter ones, which represent the sequential user activities in various periods of a day.

The Study of Joint Motion and Friction on the Floor of Poly Urethane for the Cutting Movement of Various Angles (폴리우레탄 바닥재에서 방향 전환 각도에 따른 하지 관절의 움직임과 마찰력에 관한 연구)

  • Moon, Gon-Sung;Choi, Ji-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.363-370
    • /
    • 2015
  • Objective : The purpose of this study was to give the basic data for the cutting movement with the various angels on the poly urethane. Method : Ten healthy men voluntarily participated in this study. A three-dimensional motion analysis system (VICON) and force plates were used to analyze the movements of the joints for the lower extremities. For the statistical analysis the IBM SPSS 21.0 was used to perform repeated measured ANOVA and post-hoc comparison result was used to perform the Scheffe and the level of significance was set up at ${\alpha}=.05$. Results : There were significant differences for the time required for the increasing angles of the cutting movement(p<.05). In addition, there were significant differences for the maximum dorsiflexion, plantarflexion of ankle joint, maximum flexion of knee joint and hip joint with the increasing the angles of cutting movement(p<.05). Also, there were significant differences for the maximum adduction and abduction angle of the hip joint with the increasing of the angles of cutting movement. There was signigicant difference for the resultant utilized coefficient of friction(RuCOF) for the increasing angles of cutting movement(p<.05). Conclusion : There was a pattern to increase the coefficient friction with the angle of cutting direction. Also, it would be possible to use the poly urethane for the outdoor floor with the results of this study.

Condition Monitoring of Tool wear using Sound Pressure and Fuzzy Pattern Recognition in Turning Processes (선삭공정에서 음압과 퍼지 패턴 인식을 이용한 공구 마멸 감시)

  • 김지훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.164-169
    • /
    • 1998
  • This paper deals with condition monitoring for tool wear during tuning operation. To develop economic sensing and identification methods for turning processes, sound pressure measurement and digital signal processing technique are proposed. To identify noise sources of tool wear and reject background noise, noise rejection methodology is proposed. features to represent condition of tool wear are obtained through analysis using adaptive filter and FFT in time and frequency domain. By using fuzzy pattern recognition, we extract features, which are sensitive to condition of tool wear, from several features and make a decision on tool wear. The validity of the proposed system is condirmed through the large number of cutting tests in two cutting conditions.

  • PDF

Design Analysis and Apparel Patternmaking of Lingerie Look (란제리룩의 디자인 분석 및 실물 패턴제작)

  • Yoon, Jin-Ah;Lee, Myoung-Hee
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.7 s.107
    • /
    • pp.152-166
    • /
    • 2006
  • The purpose of this study was to make patterns for lingerie look after examining expressive characteristics and constructive elements of lingerie look. As underwear became outerwear, position of wearing, materials, and details had changed, and the phenomenon to expose one's body has increased. The constructive elements found in the lingerie look were classified into silhouette, fastening, dart, and cutting line. Many of corset looks revealed cutting lines such as diagonal, perpendicular, and horizon. Brassiere look used perpendicular rutting lines or horizontal cutting lines passing through the bust point in order to highlight the volume by adding darts. There were styles Of chemise looks that used princess lines or separately added a brassier on the breast. Based on the examination of the elements, a total of four apparel works were created, including one flat pattern and three draping patterns. With new infra-apparel designs and patterns, this study was able to artificially highlight the body and express the beauty of costume through revelation of body. In addition, it explored the possibility that the phenomenon that underwear becomes outerwear may be a new idea of dress designing.

A Study on the Gold Foil Patch Design Using Traditional Patterns (전통문양을 활용한 금박패치디자인 연구)

  • Oh, Yu-Kyeong;Song, Jung-A
    • Fashion & Textile Research Journal
    • /
    • v.24 no.1
    • /
    • pp.95-107
    • /
    • 2022
  • In reality, the distinction between the Korean traditional culture and the cultures of other countries is at a delicate boundary. Additionally in the wake of the recent socio-cultural confrontation between Korea and China, it has become necessary to establish the foundation and area of Korean traditional culture and to actively utilize the importance of improving awareness of Korean traditional culture. To reorganize the reckless use of the gold foil pattern shown in the rental hanbok, data on the museum's collection of gold leaf patterns were collected and analyzed. Based on the gold foil, Gilsang characters such as Phoenix pattern, Crane pattern, Bat pattern, Flower pattern, Fruit pattern and recovery advice were extracted through references. The traditional gold foil pattern was reconstructed and relocated to design the gold leaf patch. Based on the collection and analysis of the museum's relics, the Wonsam & Daedae, Dangeui, Sranchima, Sagyusam, Jeonbok, Bokgun, and Daenggi were produced. Therefore, we present the possibility of producing gold foil and modern methods for producing gold foil using laser cutting techniques that can express refinement and complexity well, and gold foil thermal transfer paper with retouchable effects. Additionally, we would like to reflect upon the practicality and the convenience to modern people by considering the complexity and hassle of the traditional gold foil production process, and the disadvantages of processes that require relatively longer time. It intends to help revitalize the market of Korean traditional clothing and fashion products.

Chip Shape Control using AE Signal in Pure Copper Turning (순동선삭가공에서 AE 신호를 이용한 칩 형상 제어)

  • Oh, Jeong Kyu;Kim, Pyeong Ho;Koo, Joon Young;Kim, Duck Whan;Kim, Jeong Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.330-336
    • /
    • 2014
  • The continuous chip generated in cutting process deteriorates workpiece, tool, and machine tool system. It is necessary to treat this continuous chip in ductile material machining condition for stable cutting. This paper deals with the chip control method using acoustic emission(AE) signal in pure copper turning operation. AE raw signals, root mean square(RMS) signals and wavelet transformed signals measured in turning process are introduced to analysis for chip patterns. With analysis of AE signals, it is obtained that the produced chip patterns are correlated with the specified AE signals which are transformed by fuzzy pattern algorithm. By this experimental investigation, the chip patterns can be classified at significant level in pure copper machining process and controlled from continuous chips to reduced-length stable chips.