• Title/Summary/Keyword: cutting oil

Search Result 156, Processing Time 0.02 seconds

Environmentally Conscious High Speed Machining Characteristics of Aluminum Alloys(AC4C.1) (알루미늄 합금(AC4C.1)의 환경친화적 고속가공 특성)

  • Bae, Jung-Cheol;Hwang, In-Ok;Kang, Ik-Soo;Kim, Jung-Suk;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • Recently, environmental pollution has become a significant problem in industry and many researchers have investigated in order to preserve the environment. Environmentally conscious machining and technology have more important position in machining process, because cutting fluid has bad influence on the environment in milling process. This research is the experimental study on high speed machining of aluminum alloys through environmentally conscious machining. In this study, the surface roughness and chip appearance was investigated in the machining of aluminum alloys by dry machining, using cutting fluid and oil mist.

  • PDF

Environmentally Conscious High Speed Machining Characteristics of Aluminium Alloys(AC4C.1) (알루미늄 합금(AC4C.1)의 환경친화적 고속가공 특성)

  • 황인옥;강익수;강명창;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.95-99
    • /
    • 2003
  • Recently, environmental pollution has become a significant problem in industry and many researches have been investigated in order to preserve the environment. Environmentally conscious machining and technology have more and more important position in machining process. The cutting fluid has greatly bad influence on the environment in the milling process. This research is experimental study on high speed machining of aluminum alloys through environmentally conscious machining. In this study, the machinability surface roughness and chip appearance was investigated in the machining of aluminum alloys applied dry machining and using cutting fluid, oil mist.

  • PDF

An experimental study on the roundness effect for the cutting conditions in a cylinder cutting by end mill (엔드밀에 의한 원통 가공시 절삭조건에 따른 진원도의 실험적 연구)

  • 박희견
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.52-60
    • /
    • 1999
  • In this study the effect of roundness error with respect to the cutting conditions using the external cylindrical work piece by end mill cutting in a machining center was studied. the end mill used in this study is HSS coated with Ti-N which is of Ø 12-4 flutes. The material of workpiece is SM20C and cutting oil is used as a cooling flued The cutting experiments were carried out for the several cutting conditions(depth of cut height of end mill feed rate revolution per minute and cutting direction) and their roundness effects were compared using the least squares circle measuring method. The experimental results are summarized as follows : 1) The cutting depth is dominant for the roundness of a cylindrical work piece and the cutting speed must be determined precisely when the cutting depth is large 2) When the cutting direction in circular manufacturing is the same with the spindle rotation i.e up-cutting condition the surface roundness is also improved.

  • PDF

Synthesis and Evaluation of New Nonflammable Cleaning Agents (난연성 세정제의 합성 및 평가에 관한 연구)

  • Kim, Ah Na;Yu, Young;Kim, Seok Chan
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.184-188
    • /
    • 2013
  • To increase flash point which is related to flammability, seven unprecedented new cleaning agents containing fluoride atoms have been invented. These newly synthesized cleaning agents's physical properties which were conducted by Korea Institute of Petroleum Management by using a standard method showed excellent values. Particularly, flash point of newly synthetic cleaning agents is more higher than that of fluoride free compound. A specimen for cleaning ability was prepared by cutting in $60mm{\times}40mm$ size of stainless steel plate. The surface of the above specimens was applied with four kinds of contaminants, such as paraffin based drawing oil, flux abietic acid, water-insoluble cutting oil, and lubricating oil. Contaminated specimens were immersed in new compounds (1-7) for 1 to 5 minutes to dissolve oil in the cleaning agent. Although the data indicate that all compounds (1-7) exhibit lower cleaning ability toward cutting oil, it is observed that in the case of the present study more than 80% of pollutants on the surface were almost removed within 5 minutes.

마찰가공에 있어서의 분위기 영향에 관한 연구 제 1장

  • ;Sohn, Myung-Whan
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.338-346
    • /
    • 1981
  • Honing, lapping, polishing and superfinishing are applied for a precision machining to finish the metal surface, but these precision machining are micro-cutting by hard and micro-abrasive grains. Frictional machining is the new method to finish mirrorlike surface without using those abrasive grains. The frictional machining produces high pressure and high temperature instantly by compressing a tool material against the metal surface in sliding motion. The metal surface is given plastic deformation and plastic flow by the above mentioned frictional motion, but the surface roughness of the metal surface is influenced by physical and chemical reaction in surrounding atmosphere. Therefore, the atmosphere around the metal optimum atmosphere in the frictional machining. The part 1 of the study was performed in liquid atmospheres. Diesel oil, lubricant, grease, lard oil, bean oil and cutting fluid were used as such atmospheres. Medium carbon steel SM 50 C was used as a workpiece and ceramic tip was applied as a frictional tool. The result of the experiment showed characteristic machining conditions to generate the best surface roughness in each atmospheres.

A Study on the Evaluation of Cleaning Ability Using Optically Stimulated Electron Emission Method (광전자방출(OSEE)법을 이용한 세정성 평가 연구)

  • Min, Hye-Jin;Shin, Jin-Ho;Bae, Jae-Heum
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.95-102
    • /
    • 2008
  • In order to choose alternative environmental-friendly cleaning agents, it is very important in the present point that the systematic selection procedures should be introduced and applied to the industry through the evaluation of their cleaning ability, environmental characteristics, and economical factors, and that the objective and effective evaluation methods of cleanliness should be established for the industry. Thus, a novel cleaning evaluation method utilizing optically stimulated electron emission (OSEE) among various methods of cleaning ability was studied in this study. The contaminants used in this cleaning experiments were flux, solder, grease, cutting oil, and mixed soil of 35% grease and 65% cutting oil. The cleaning agents developed or prepared in our laboratory were employed and their cleaning ability were comparatively evaluated by the OSEE, gravimetry and contact angle methods. The experimental results in this work showed that flux cleaning efficiency measured by the OSEE method was similar to that of the gravimetric method, but that the OSEE method could not be compared with gravimetric method for the case of solder or grease cleaning because the contaminants radiate or absorb ultra-violet light. In case of cutting oil cleaning, the gravimetric method indicated its limitation of cleaning efficiency of cutting oil since it showed cleaning efficiency of 100%, even though residual soil remaining on the substrate surface a little after its cleaning. The comparative experimental results of cleaning ability evaluated by the OSEE- and contact angle measurement methods showed that they were similar in case of cleaning of flux, mixed soil and cutting oil. It was judged that the contact angle measurement method could evaluate the cleaning ability more precisely than the OSEE method for cleaning solder and grease.

  • PDF

Evaluation of biological treatment of cutting-oil wastes using sequencing batch reactor (SBR) process (연속 회분식 반응조 (SBR) 공정을 이용한 폐절삭유의 생물학적 처리능 평가)

  • Baek, Byung-Do;Kim, Chang-Seop;Kim, Jun-Young;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1654-1660
    • /
    • 2009
  • Two different cutting-oils from H and B companies which are sold as an eco-friendly cutting-oils were selected and the biodegradability of these commercially available cutting-oils was evaluated by the sequencing batch reactor (SBR) processes. The cutting-oil wastes ($H_1$) pre-treated by coagulation/flocculation was used as an influent to SBR. When the F/M ratio was operated 0.04 to 0.08kgCOD/kgMLSS d, removals of $BOD_5$and $COD_{Cr}$were above 97% and 91%, respectively. T-N and T-P removals were above 76% and 81%, respectively. If the diluted cutting-oil wastes ($B_1$) was used as an influent of the SBR, $COD_{Cr}$removals were above 77% at the F/M ratio of 0.01-0.02kgCOD/kgMLSS d. After the cutting-oil wastes was treated by coagulation/ flocculation ($B_2$), $COD_{Cr}$removals was above 85%. If the pre-treated cutting-oil wastes were mixed with a synthetic wastewater ($B_3$) and fed into the SBR in order to mimic the real wastewater treatment plant situation, $BOD_5$and $COD_{Cr}$removals were above 97%, 91%, respectively. T-N and T-P removals were above 79% and 76%. The ratio between $BOD_5$and $COD_{Cr}$, ($COD_{Cr}$-$BOD_5$)/$COD_{Cr}$, indicating the biodegradability of effluent of the SBR, was calculated to 85% and 61%. This means that significant amounts of non-readily-biodegradable organic compounds in the effluent of $H_1$, $B_3$are still present.

Efficient MQL-based Drilling of Inconel 601 (인코넬 601의 효율적인 MQL드릴링 가공)

  • Park, Ki-Beom;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • In drilling Inconel 601, which is used for compressor cases in aircraft engines, a lot of cutting oil must be supplied. This prevents tools from wear and fracture due to the heat buildup resulting from the high-temperature resistance and toughness of this alloy. However, the cutting oil supply has compromised the machining environment. This has caused attention to shift to an environmentally friendly cutting fluid supply system called the Minimum Quantity Lubrication(MQL) system. The aim of this study was to find a more efficient drill processing method using MQL and to verify its performance. To that end, the properties of Inconel that make it difficult -to -drill were studied by a comparison with the drilling of SM45C. Specific factors (i.e., cutting force and tool wear) were examined in relation to the conditions in the MQL-based drilling system. Based on these results, a sealed cover and step feed were proposed as measures to increase the effectiveness of the MQL system. The efficiency of the proposed method was established.

A Study on the Improvement of Cutting Force and Surface Roughness in MQL Turning (MQL 선삭가공에서 절삭력과 표면거칠기 향상에 관한 연구)

  • Hwang Young-Kug;Chung Won-Jee;Jung Jong-Yun;Lee Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.83-91
    • /
    • 2006
  • At present, industry and researchers are looking for ways to reduce the use of lubricants because of ecological and economical reasons. Therefore, metal cutting is to move toward dry cutting or semi-dry cutting. One of the technologies is known as MQL(Minimum Quantity Lubrication) machining. This research presents an investigation into MQL machining with the objective of deriving the optimum cutting conditions for the turning process of SM4SC. To reach these goals several finish turning experiments were carried out, varying cutting speed, feed rate, oil quantity and so on, with MQL and flood coolant. The surface roughness and cutting force results of tests were measured and the effects of cutting conditions were analyzed by the method of Analysis of Variance(ANOVA). From the experimental results and ANOVA, this research proposed optimal cutting conditions to improve the machinability in MQL turning process.