• 제목/요약/키워드: cutting geometry

검색결과 259건 처리시간 0.034초

정면밀링커터의 최적설계에 대한 연구(1) -절삭력 중심으로- (A Study on Optimal Design of Face Milling Cutter Geometry(I) -With Respect to Cutting Force-)

  • 김정현;김희술
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2211-2224
    • /
    • 1994
  • On face milling operation a new optimal cutter, which can minimize the resultant cutting forces, was designed from the cutting force model. Cutting experiments were carried out and the cutting forces of the new and conventional cutters were analyed in time and frequency domains. The resultant cutting forces were used as the objective function and cutter angles as the variables. A new optimal cutter design model which can minimize the resultant cutting forces under the constraints of variables was developed and its usefulness was proven. The cutting forces in feed direction of the newly designed cutter are reduced in comparison with those from the conventional cutter. The magnitudes of an insert frequency component of cutting force from the newly designed cutter are reduced than those from conventional cutter and the fluctuations of cutting force are also reduced.

2차원 절삭에서 FEM 해석의 유효성에 관한 연구 (A Study on the Effectiveness of Finite Element Method in Orthogonal Cutting)

  • 윤재웅;김홍석
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.42-49
    • /
    • 2010
  • In general, the direct experimental approach to study machining processes is expensive and time consuming, especially when a wide range of parameters are included: tool, geometry, materials, cutting conditions, etc. The aim of this study is to verify the effectiveness of finite element method for orthogonal cutting process by comparing the simulated cutting forces with measured results. Two commercialized finite element codes $AdvantEdge^{TM}$ and Deform-$2D^{TM}$ have been used to simulate the cutting forces in orthogonal cutting process. In this paper, estimated cutting and feed force components are compared with experimental results for different two materials. As a result, it has been found that FEM simulation is effective for understanding and predicting the orthogonal cutting process although some improvements on friction model and remeshing process are needed.

엔드밀 가공에서 형상 정밀도 향상을 위한 절삭 조건 선정 (Cutting Condition Selection for Geometrical Accuracy Improvement in End Milling)

  • 류시형;최덕기;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1784-1788
    • /
    • 2003
  • For the improvement of geometrical accuracy in end milling, cutting method and cutting condition selection are investigated in this paper. As machining processes are composed of several steps such as roughing, semi-finishing. and finishing, cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting. The effects of tool teeth numbers, tool geometry, and cutting conditions on the form error are analyzed. Using the from error prediction method from tool deflection, cutting condition for geometrical accuracy improvement is discussed. The characteristics and the difference of generated surface shape in up and down milling are dealt with and over-cut free condition in up milling is presented. The form error reduction method by alternating up and down milling is also suggested. The effectiveness of the presented method is examined from a set of cutting tests under various cutting conditions. This research contributes to cutting process optimization for the geometrical accuracy improvement in die and mold manufacture.

  • PDF

푸리에 급수를 이용한 엔드밀링 절삭력 및 공구변형 표현 (Closed Form Expression of Cutting Forces and Tool Deflection in End Milling Using Fourier Series)

  • 류시형
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.76-83
    • /
    • 2006
  • Machining accuracy is closely related with tool deflection induced by cutting forces. In this research, cutting forces and tool deflection in end milling are expressed as a closed form of tool rotational angle and cutting conditions. The discrete cutting fores caused by periodic tool entry and exit are represented as a continuous function using the Fourier series expansion. Tool deflection is predicted by direct integration of the distributed loads on cutting edges. Cutting conditions, tool geometry, run-outs and the stiffness of tool clamping part are considered together far cutting forces and tool deflection estimation. Compared with numerical methods, the presented method has advantages in prediction time reduction and the effects of feeding and run-outs on cutting forces and tool deflection can be analyzed quantitatively. This research can be effectively used in real time machining error estimation and cutting condition selection for error minimization since the form accuracy is easily predicted from tool deflection curve.

STS304잘삭시 Chip Breaker를 이용한 Chip제어에 관한 연구 (A Study on the Chip Control in Machining STS304 Using a Chip Breaker)

  • Yeom, D.W.;Yu, K.H.;Seo, N.S.
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.42-49
    • /
    • 1994
  • One of the parameters that influence the productivity of every industry, involved in metal cutting, is the chip from ; continuous or broken chip. Chip form varies according to machining conditions, material used, tool geometry and chip breaker geometry. Therefore, in this study we carried out the experiment on the chip control in machining STS304 using an attached obstruction type chip breaker. Namely, with the change of a chip breaker distance, chip breaker angle, cutting characteristics in machining STS304 which is well-known as a machining difficult material and produces a saw-toothed chip. The results of the experiment are as follows : 1. The chip breaker distance and angle under which the preferred chip is produced, show 1.5mm and 60 .deg. , while chip breaker angle in machining an ordinary steel was well-known 45 .deg. . 2. During the cutting process, the change of feed than the change of velocity was applied as cutting conditions, effects more clearly on the chip breaking. 3. Considering a whole surface roughness, it is not advisable to apply chip breaker mentioned above for precision cutting.

  • PDF

임펠러의 효율적인 5축 NC 가공에 관한 연구 (A Study on Efficient Machining of Impeller with 5-axis NC Machine)

  • 조환영;이희관;공영식;양균의
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.399-404
    • /
    • 2002
  • An efficient method of machining impeller is presented. In the roughing process, the cutting area is divided into two regions to reduce cutting time and select cutting tools. The regions are determined by characteristic point on the geometry of impeller blade. Then, the tool of the maximum radius is selected in each area. Tool interference in cutting areas is avoided by checking the intersection between cooing tool axis and ruling line on blade surface.

  • PDF

밀링공정에서 이송모터와 주축모터의 전류신호를 이용한 절삭력 추정 (Cutting force estimation using spindle and feeddrive motor currents in milling processes)

  • 김승철;정성종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1407-1410
    • /
    • 1997
  • Advanced sensor design and filtering technology have been studied to obtain information for condition monitoring and diagnostics inmachining processes. To develope and economic monitoring system in end milling processes, indirect and reliable type of cutting force estimators were required. In this paper, an estimation method of cutting forces during end milling processes was studied through the measurement of current signals obtained from spindle and feeddrive motors. Cutting force and torque models were derived from the cutting geometry in down milling processes. Relationships between motor currents and cutting forces were also developed in the form of AC and DC components from the developed force models. The validity of the cutting force estimator was confirmed by the experiments under various cutting conditions.

  • PDF

정면 밀링의 절삭력 해석을 위한 평균 비절삭저항 모델의 개발

  • 이병철;황정철;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.28-33
    • /
    • 1992
  • The paper describes a new mean specific cutting pressure model in order to improve the accuracy of prediction of cutting force for face milling. The new mean specific cutting pressure model produces a mean specific cutting pressure and coefficients applied to existing cutting model not by traditional method but by considering intermittence and variation of chip width according to insert cutting position to take into cutter geometry machining condition and width of workpiece, and considering a mean measure force according to spindle eccentricity and mean measure force according to spindle eccentricity and insert initial position errors.. The simulated forces in X, Y, Z directions resulted from the simulated cutting model and the new cutting model are compared with measured forces in the time end frequency domains. The simulated forces in the time and frequency domains. The simulated forces resulted from the new cutting model have a good degreement with measured forces in comparison with these resulted from the existing cutting model

Effect of Ball End Mill Geometry and Cutting Conditions on Machinability of Hardened Tool Steel

  • Jang, Dong-Y.;Won, S.-T.
    • KSTLE International Journal
    • /
    • 제3권1호
    • /
    • pp.17-22
    • /
    • 2002
  • Roughing of tool steel in its hardened state represents a real challenge in the die and meld industry and process improvement depends on research of tool material, coating technique, and lubrication. However, roughing of hardened steels generates extreme heat and without coolant flooding, tool material cannot withstand the high temperature without choosing the right tools with proper coating. This research conducted milling tests using coated ball end mills to study effects of cutting conditions and geometric parameters of ball end mills on the machinability of hardened tool steel. KP4 steel and STD 11 heat treated steels were used in the dry cutting as the workpiece and TiAIN coated ball end mills with side relief angle of 12$^{\circ}$ was utilized in the cutting tests. Cutting forces, tool wear, and surface roughness were measured in the cutting tests. Results from the experiments showed that 85 m/min of cutting speed and 0.32 mm/rev of feed rate were optimum conditions for better surface finish during rough cutting and 0.26mm/rev with the same cutting speed are optimum conditions in the finish cutting.

엔드밀 가공에서 푸리에 급수를 이용한 절삭력 및 공구변형 표현 (Representation of cutting forces and tool deflection in end milling using Fourier series)

  • 류시형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.781-785
    • /
    • 2005
  • Cutting forces and tool deflection in end milling are represented as the closed form of tool rotational angle and cutting conditions. The discrete cutting forces caused by tool entry and exit are continued using the Fourier series expansion. Tool deflection is predicted by direct integration of the distributed loads on cutting edges. Cutting conditions, tool geometry, run-outs and the stiffness of tool clamping pan are considered for cutting forces and tool deflection estimation. Compared to numerical methods, the presented method has advantages in short prediction time and the effects of feeding and run-outs on cutting forces and tool deflection can be analyzed quantitatively. This research can be effectively used in real time machining error estimation and cutting condition selection for error minimization since the ferm accuracy is easily predicted by tool deflect ion curve.

  • PDF