• 제목/요약/키워드: cutting geometry

검색결과 259건 처리시간 0.023초

공구마멸주건에서 AE 신호의 특성 (Charactcristics of AE Signal in Tool Wear Condition)

  • 임진규;강명창;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.58-63
    • /
    • 1993
  • The charactistics of AE(Acoustic Emission) signal is related to cutting conditions, tool materials and tool geometry in metal cutting. The tool geometry change which is derived from tool wear affects the source of AE signal in machining process. The relationship between AE signal and tool wear was experimentally investigated. THe value of RMS(Root Mean Sequare) and Amplitude of AE signal were increased in tool wear condition. Also the high value of Count per Hit and Count vs. Frequency was observed in this condtion. As a result, tool wear can be effectively detected by AE signal during cutting operation.

  • PDF

고속용 엔드밀 가공 시 여유각을 고려한 가공특성 (Machining Characteristics in High Speed Endmill Operation considering Clearance angle)

  • 고성림;박정남;김경배;서천석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.22-25
    • /
    • 2002
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed endmilling. The tool geometry parameters and cutting process have complex relationship. In order to explain the effect of clearance angle and exist the optimal clearance angle according to the diameter, Using various tool with different clearance angle, numerous cutting tests (cutting force, surface accuracy, too life) was undertaken to show the relationship between clearance angle and cutting process.

  • PDF

공구날 특이길이의 물리적 적합성 고찰 (Physically Compatible Characteristic Length of Cutting Edge Geometry)

  • 안일혁;김익현;황지홍
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.279-288
    • /
    • 2012
  • The material removal mechanism in machining is significantly affected by the cutting edge geometry. Its effect becomes even more substantial when the depth of cut is relatively small as compared to the characteristic length which represents the shape and size of the cutting edge. Conventionally, radius or focal length has been employed as the characteristic length with the assumption that the shape of cutting edge is round or parabolic. However, in reality, there could be various ways to determine the radius or focal length even for the same tool edge profile, depending on the region to be considered as cutting edge in the measured profile and the constraints to be set in constructing the best fitted circle or parabola. In this regard, the present study proposes various models to determine the characteristic length in terms of radius or focal length. Their physical compatibility are validated by carrying out 2D orthogonal cutting experiments using inserts with a wide range of characteristic length ($30{\sim}180\;{\mu}m$ in terms of radius) and then by investigating the correlation between the characteristic length and the cutting forces. Such validation is based on the common belief that the larger the characteristic length is, the blunter the cutting edge is and the higher the cutting forces are. Interestingly, the results showed that the correlation is higher for the radius or focal length obtained with a constraint that the center of best fitted circle or the focus of the best fitted parabola should be on the bisectional line of the wedge angle of tool.

SUS304 절삭시 Carbide 공구의 Crater 마모에 관한 연구 (A Study on the Flank Wear of Carbide Tool in Machining SUS304)

  • 정진용;오석형;김종택;서남섭
    • 한국정밀공학회지
    • /
    • 제8권3호
    • /
    • pp.44-54
    • /
    • 1991
  • A Study was made on falnk wear in carbide tools in turning SUS304 steel. When an austenitic stainless steel (SUS304 steel) is cut with the tool, saw-toothed chip are produced. It is found that machining SUS304 steel would make a tool worn fast. For increasing productivity, tool wear has to be predicted and controlled. An amended cutting geometry consisting of a negative rake angle ($-6^{\circ}$ ) and a high clearance angle ($-17^{\circ}$ ) is proposed for decreasing carbide tool wear (flank) in the machining of SUS304 steel. The amended cutting geometry is found to make the flank wear lower than a general cutting geometry (rake angle $6^{\circ}$ , clearance angle $5^{\circ}$). The effects of the three cutting variables (cutting speed, feed, tool radius) on the flank wear analyzed by fiting a simple first-order model containing interaction terms to each flank wear parameter by means of regression analysis and the predicted from first-order regression analysis model equation of flank wear.

  • PDF

플랫 엔드밀을 이용한 미세 홈 가공에 관한 연구 (A Study on Micro-grooves Cutting Using Flat-end Mill)

  • 이재일;이채문;이득우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.209-214
    • /
    • 2002
  • Mechanical micro-engineering is an easy and cheap way to fabricate micro-structures. If the application of the conventional machining method using flat-end mill becomes available for the micro-manufacturing process, it will be advanced as an extension of the conventional machining process. In this study, micro-grooves cutting using flat-end mill(($\phi$8) was performed. The characteristics on flat-end milling was investigated to improve machinability of micro-grooves. The experiments were performed according to variations of spindle revolution, depth of cut, and feed rate. Machinability through various cutting conditions was evaluated by surface geometry, tool wear, and cutting force. The results show that micro V-grooves of width(pitch) 29${\mu}{\textrm}{m}$ were acquired by flat-end milling. The maximum and minimum roughness of the wall of grooves was 438 and 67nm, respectively

  • PDF

환경친화적 건식 드릴링을 위한 드릴형상 및 절삭조건 (Drill Shape and Cutting Conditions for Environmentally Conscious Drilling)

  • 고태조
    • 한국생산제조학회지
    • /
    • 제9권2호
    • /
    • pp.36-44
    • /
    • 2000
  • In this paper drill shape and cutting conditions for environmentally conscious dry drilling of A319 Al-alloy are studied by experimental method. The experiment is planned with Taguchi's method that is based on the orthogonal array of design factors. The result is summarized as follows (1) Drill geometry optimization can increase the number of holes in dry drilling and also large helix angle and large point angle are desirable in dry drilling. (2) It is found that cutting conditions that is cutting speed and feed rate are closely related to the drill geometry(3) For dry drilling of Al-alloys drill shape and cutting conditions are selected and tested by experimental method. But it is found that the perfect dry drilling is difficult because of the machining characteristics of Al-alloys and so new machining method such as minimal lubricant application is required.

  • PDF

엔드밀 가공 시 여유각을 고려한 가공특성 (Machining Characteristics in High Speed Endmill Operation Considering Clearance Angle)

  • 박정남;고성림
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.43-49
    • /
    • 2004
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed end milling operation. The tool geometry parameters have complex relationship with cutting process parameter. In order to explain the effect of clearance angle, 2D turning operation in lathe and end milling operations are performed. Tools with different clearance angles are manufactured. Cutting forces, machining accuracy and tool life are examined according to the change of clearance angle. As clearance angle increases, cutting force decreases and machining accuracy improves. But it has been proved that there exists the optimal clearance angle according to the diameter of end mill for maximum tool life which is measured by frank wear.

구멍가공시 버형성 최소화를 위한 드릴형상 개발 (Development of Drill Geometry for Burr Minimization in Drilling)

  • 장재은;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.911-914
    • /
    • 1997
  • This Experiment was carried out for bur minimization in drilling. New drill geometries are proposed to minimize the burr formation in drilling operation. Three types of drills are made, champer, round and step drill. The burr formed in first cutting by front cutting edge ca be removed in second cutting by the cutting edges in chamfer, round edge and step. New burrs are formed by second cutting and can be minimized according to the change of drill geometry like, chamfer size and angle, corner radius in round drill and step size and angle in step drill. To measure the burr formed in drilling, laser sensor is used.

  • PDF

버형성 최소화를 위한 스텝드릴 형상 개발 (Development of Step Drill Geometry for Burr Minimization)

  • 장재은;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.1043-1046
    • /
    • 2002
  • In this paper, drill tests were carried out by modifying drill geometry for burr minimization. Final objective of this study is to develop compatible drill shape for minimization of burr formation. These experimented results with modified drill are measured with laser sensor after performing drilling with variable material. Simultaneously, the cutting force and the torque of various drill geometry have been observed with same cutting condition to judge drill stability. As a result, burr was minimized in step drill with 75$^{\circ}$ step angle at every material.

  • PDF

구멍가공시 스텝드릴을 이용한 버형성 최소화를 위한 연구 (Minimization of Burr Formation in Drilling with Step Drill)

  • 고성림;김진호
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.132-140
    • /
    • 2000
  • In conventional drilling, burr geometry can be changed according to the variation of drill geometry like point angle, rake angle. Step drilling is proposed to minimize the burr formation in drilling operation. The burr formed in first cutting can be removed in second cutting by the edge in step. The burr formed in second cutting by the edge in step can be minimized according to the change of geometry like, step angle and depth. The mechanism in step drilling is analyzed. Some step drills are applied to drilling the input shaft which is used for vehicle steering. To measure the burr formed in drilling, laser and height gage are used.

  • PDF