• 제목/요약/키워드: cutting force components

검색결과 93건 처리시간 0.023초

경사절삭 모델에 의한 상향 엔드밀링절삭 해석 (Analysis of the Up End Milling Process by Transforming to the Equivalent Oblique Cutting Model)

  • 이영문;송태성;심보경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.902-906
    • /
    • 2000
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel. 82% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

  • PDF

엔드밀링의 전단특성 및 마찰특성 해석 (The Shear and Friction characteristics Analysis of End-milling)

  • 이영문;송태성;심보경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.724-729
    • /
    • 2000
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel, 72% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

  • PDF

엔드밀링의 전단특성 및 마찰특성 해석 (The Shear and Friction Characteristics Analysis of End-Milling)

  • 이영문;송태성;심보경
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1520-1527
    • /
    • 2001
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel, 72% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

다층 신경회로망에 의한 밀링가공의 절삭력 시뮬레이션 (Simulating Cutting Forces in Milling Machines Using Multi-layered Neural Networks)

  • 이신영
    • 한국생산제조학회지
    • /
    • 제25권4호
    • /
    • pp.271-280
    • /
    • 2016
  • Predicting cutting forces in machine tools is essential to productivity improvement and process control in the manufacturing field. Furthermore, milling machining is more complicated than turning machining. Therefore, several studies have been conducted previously to simulate milling forces; this study aims to simulate the cutting forces in milling machines using multi-layered neural networks. In the experiments, the number of layers in these networks was 3 and 4 and the number of neurons in the hidden layers was varied from 20 to 200. The root mean square errors of simulated cutting force components were obtained from taught and untaught data for the various neural networks. Results show that the error trends for untaught data were non-uniform because of the complex nature of the cutting force components, which was caused by different cutting factors and nonlinear characteristics coming into play. However, trends for taught data showed a very good coincidence.

엔드밀링에서 순간전단면을 이용한 절삭력 모델 연구 (A Study on the Instantaneous Shear Plane Based Cutting Force Model for End Milling)

  • Hong, Min-Sung
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.34-43
    • /
    • 2002
  • The purpose of this paper is to further extend the theoretical understanding of the dynamic end milling process and to derive a computational model to predict the milling force components. A comparative assessment of different cutting force models is performed to demonstrate that the instantaneous shear plane based formulation is physically sound and offers the best agreement with experimental results. The procedure f3r the calculation of the model parameters used in the cutting force model, based on experimental data, has been presented. The validity of the proposed computational model has been experimentally verified through a series of cutting tests.

절삭력을 이용한 채터의 감지에 관한 연구 (A Study on the Detection of Chatter Vibration using Cutting Force Measurement)

  • 윤재웅
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.150-159
    • /
    • 2000
  • In-process diagnosis of the cutting state is essential for the automation of manufacturing systems. Especially when the cutting process becomes unstable it induces self-exited vibrations a frequent case of poor tool life rough surface finish damage to the workpiece and the machine tool itself and excessive down time. To ensure that the cutting process main-tains stable it is highly desirable to have the capability of real-time. To ensure that the cutting process main-tains stable it is highly desirable to have the capability of real-time monitoring and controlling chatter. This paper describes the detection method of chatter vibration using cutting force in turning process. In order to detect a chatter vibra-tion the dynamic fluctuation of radial force is analyzed since this components is sensitive to the chatter. The envelope sig-nal of radial force has been calculated by the use of FIR Hilbert transformer and it was useful to classify the chatter signal from the dynamically unstable circumstances. It was found that the mode and the mode width were closely correlated with the chatter amplitude was well. Finally back propagation(BP) neural network have been applied to the pattern recognition for the classification of chatter signal in various cutting conditions. The validity of this systed was confirmed by the experiments under the various cutting conditions.

  • PDF

볼엔드밀 중삭가공시 커습에 의한 절삭특성과 공구마모 (Effect of Cusp on the Cutting Characteristics and Tool Wear of Semi-finishing in Ball End Milling)

  • 조철용;문상돈;류시형
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.79-84
    • /
    • 2006
  • In modem manufacturing, many products that have geometrically complicated features, including three-dimensional sculptured surfaces, are designed and produced. In the production of these complex-shaped mechanical components, e.g. automobile dies, molds, and various engineering applications, the ball-end milling process is one of the most widely used NC machining processes that consists of roughing, semi-finishing and finishing. In semi-finishing, cusps remained after roughing according to the used tools that have two patterns of stairs and wave shapes. These cusp shapes have air-cut in cutting and instability caused by high cutting speed that affects the cutting characteristics such as cutting force and tool wear. Cutting characteristics are measured and analyzed through cutting force, FFT analysis of cutting force and tool wear along cutting length according to low tool paths with same metal removal rate. As a results of the experiments, this study suggests the optimal conditions of tool path and cutting direction. This approach for the cutting characteristics of semi-finishing provides a useful aid for the productivity and efficiency improvements of NC machining processes.

엔드밀 가공에서의 공구 변형에 대한 유한요소해석 (A study on Finite Element Analysis of Tool Deformation in End Milling)

  • 김국원;정성찬
    • 한국산학기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.83-86
    • /
    • 2005
  • 본 연구에서는 절삭 가공시 공구가 받는 절삭력과 칩-공구 사이에서 발생하는 절삭온도에 의한 공구의 변형을 예측하였다. 3D CAD를 이용하여 공구를 모델링 하였으며 절삭력과 절삭온도를 하중조건으로 부여하여 유한요소해석을 수행하였다. 하중조건으로 사용한 절삭력과 절삭온도는 절삭이론을 이용한 절삭력 모델을 사용하여 예측하였으며 실험을 통해 모델의 타당성을 검증하였다. 그러므로 본 연구는 절삭조건과 재료 물성치 그리고 공구 형상만을 알면 이에 따른 절삭력 성분 및 절삭온도 둥을 얻을 수 있고, 이를 이용하여 절삭 가공시 발생하는 공구의 변형을 예측할 수 있다.

  • PDF

마이크로 채널의 가공성에 관한 연구 (A Study on the Machinability of Micro-Channel)

  • 홍민성;김종민
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.51-57
    • /
    • 2008
  • Recently, the manufacturer of microscopic structures along with the development of technology to produce electronics, communication and semiconductors allows various components to be smaller in size, with higher precision. Therefore, preoccupancy of micro/nano-level machining technology in order to product micro/nano-components and parts is key issue in the field of manufacturing. In this study, machinability of micro machining was studied through the machining of aluminum, brass and steel workpiece. Inspection of the cutting force variation patterns of large numbers of micro machining indicated that characteristics of the workpiece. Surface roughness prediction methods were developed by considering the variation of the static part of the feed direction cutting force. The accuracy of the proposed approaches were tested with experimental data and the agreement between the predictions and actual observations are addressed.

2차원 절삭에서 FEM 해석의 유효성에 관한 연구 (A Study on the Effectiveness of Finite Element Method in Orthogonal Cutting)

  • 윤재웅;김홍석
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.42-49
    • /
    • 2010
  • In general, the direct experimental approach to study machining processes is expensive and time consuming, especially when a wide range of parameters are included: tool, geometry, materials, cutting conditions, etc. The aim of this study is to verify the effectiveness of finite element method for orthogonal cutting process by comparing the simulated cutting forces with measured results. Two commercialized finite element codes $AdvantEdge^{TM}$ and Deform-$2D^{TM}$ have been used to simulate the cutting forces in orthogonal cutting process. In this paper, estimated cutting and feed force components are compared with experimental results for different two materials. As a result, it has been found that FEM simulation is effective for understanding and predicting the orthogonal cutting process although some improvements on friction model and remeshing process are needed.