• Title/Summary/Keyword: cutting

Search Result 7,448, Processing Time 0.035 seconds

Cutting mechanism and characteristics of polystyrene foam (발포 스티로폴의 절삭기구 및 특성)

  • 김한섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.158-163
    • /
    • 1998
  • In this paper, the cutting characteristics and cutting mechanism of polystyrene foam was experimentally investigated. It was found that polystyrene foam has different cutting characteristics and cutting mechanism comparing with that of normal metal materials. By using the experimental results, the optimal cutting tool was designed and examined for approving the cuttingability of polystyrene foam.

  • PDF

A Study on the Cutting and Vibration Characteristic of Ultrasonic Vibration Cutting (초음파 진동선삭에서의 절삭 및 진동특성에 관한 연구)

  • 이규배;임영호;이계철
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.147-154
    • /
    • 1994
  • In this study, ultransonic vibration cutting system was contructed by installing throw-away-tool tip (KT 350) by screw lock on the bending vibration mode in free-free beam. During the conventional cutting and ultransonic conventional cutting of SM45C, variations of cutting force, roughness and acceleration were measured. The results were compared and analyzed in detail, and it was found that the ultransonic vibration cutting was more effective in reducing cutting force compareed with the conventional cutting .

  • PDF

Vibration Prediction in Milling Process by Using Neural Network (신경회로망을 이용한 밀링 공정의 진동 예측)

  • 이신영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-7
    • /
    • 2003
  • In order to predict vibrations occurred during end-milling processes, the cutting dynamics was modelled by using neural network and combined with structural dynamics by considering dynamic cutting state. Specific cutting force constants of the cutting dynamics model were obtained by averaging cutting forces. Tool diameter, cutting speed, fled, axial and radial depth of cut were considered as machining factors in neural network model of cutting dynamics. Cutting farces by test and by neural network simulation were compared and the vibration displacement during end-milling was simulated.

Growth Characteristics of Trees following Different Types of Cutting in Quercus acutissima Stand (상수리나무 임분 내에서 벌채 유형에 따른 조림목의 생장 특성)

  • Shin, Yu-Seung;Song, Sun-Hwa;Yang, A-Ram;Hwang, Jaehong;Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1075-1083
    • /
    • 2014
  • The objective of this study was to evaluate the effect of cutting types on microclimate and growth characteristics of afforested tree in Quercus acutissima stand after different types of cutting. The difference in temperature reaching $5.2^{\circ}C$ was shown in between clear cutting and selective cutting treatments. On July and August days with temperatures more than $35^{\circ}C$ often appeared in clear cutting stand. The values of VPD in July and August were higher than those in other months. Maximum VPD of 3.99 kPa was shown in clear cutting stand on May 23 as a prolonged rainless days appeared. However, VPD in selective cutting stand always stayed under 3.0 kPa throughout growing season. A higher intensity was shown in clear cutting and strip clear cutting stands, reaching to more than $1,600{\mu}mol\;m^{-2}s^{-1}$ at midday on early August, while that in selective cutting stand stayed about 1,500. In relative growth rate selective cutting stand showed a significantly higher relative growth rate in plant height than those in other cutting stands (p<0.05). The number of leaf in current-year branches significantly increased in selective cutting stand, whereas no increase was shown in clear cutting and strip clear cutting stands (p<0.05). In addition, relative elongation rate of current year branch also showed higher values in selective cutting stand compared with that in strip clear cutting stand (p<0.05). However, leaf mass per unit area (LMA) was higher in order of strip clear cutting, clear cutting, and selective cutting stands. From these results it is concluded that environmental conditions in clear cutting and strip clear cutting stands during growing season are more stressful to afforested tree species, resulting in lower relative growth in plant height, elongation of current-year branches, and leaf number per branch compared with those in selective cutting stand. Consequently, more data must be accumulated in the field to find out best cutting type in plantation considering the adaptational characteristic of each tree species varies with species and life span of tree is long.

Development of Accurate Cutting Simulation and Feedrate Scheduling System for CNC Machining (CNC 가공의 정밀 절삭 시뮬레이션 및 이송속도 스케줄링 시스템 개발)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.370-375
    • /
    • 2004
  • This paper presents an accurate cutting simulation and feedrate scheduling system for CNC machining. This system is composed of a cutting simulation part and a feedrate scheduling part. The cutting simulation part computes the geometric informations and calculates the cutting forces in CNC machining. The cutting force model using cutting-condition-independent coefficients was introduced for flat end milling and ball end milling. The feedrate scheduling part divides original blocks of NC code into smaller ones with optimized feedrates to adjust the peak value of cutting forces to reference forces. Some machining examples show that the developed system can control the cutting force at desired levels.

  • PDF

Prediction and Measurement of Cutting Force in Side-Milling (사이드 밀링 가공의 절삭력 측정 및 예측)

  • Lee, Chang-Ho;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.437-446
    • /
    • 2013
  • There have been numerous studies on end milling processes. However, these have been restricted to the application of tools for special cutting purposes. A side milling cutter can handle long, deep, and open slots in a more efficient manner, and it provides the best stability and productivity for this type of milling. In this paper, a method to predict the cutting forces in side milling is described, and simulated cutting forces are compared with those obtained by cutting experiments. In particular, the side milling process easily generates relative motion between the tools and the workpiece because it produces intermittent cutting forces that cause vibrations over a wide frequency range. Therefore, the application of a dynamic cutting model instead of a static cutting model is appropriate to forecast the cutting forces more accurately.

Dynamic Model in Ball End Milling of Inclined Surface (볼 엔드밀 경사면 가공의 동적 모델)

  • Kim Seung-Yoon;Kim Byung-Hee;Chu Chong-Nam;Lee Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.39-46
    • /
    • 2006
  • In this work a dynamic cutting force model in ball end milling of inclined surface is introduced. To represent the complex cutting geometry in ball end milling of inclined surface, workpiece is modeled with Z-map method and cutting edges are divided into finite cutting edge elements. As tool rotates and vibrates, a finite cutting edge element makes two triangular sub-patches. Using the number of nodes in workpiece which are in the interior of sub-patches, instant average uncut chip thickness is derived. Instant dynamic cutting forces are computed with the chip thickness and cutting coefficients. The deformation of cutting tool induced by cutting farces is also computed. With iterative computation of these procedures, a dynamic cutting force model is generated. The model is verified with several experiments.

Specific Cutting Force Coefficients Modeling of End Milling by Neural Network

  • Lee, Sin-Young;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.622-632
    • /
    • 2000
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on. The cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling processes for various cutting conditions, their mathematical model is important and the model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging forces of cutting tests. In this paper the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in the learning stage as the omitted number of experimental data increase the average errors increase as well.

  • PDF

Prediction of Cutting Forces and Estimation of Size Effects in End Milling Operations by Determining Instantaneous Cutting Force Constants (엔드 밀링 공정에서 순간 절삭력 계수 결정을 통한 절삭력 예측 및 크기효과 평가)

  • Kim, Hong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1003-1009
    • /
    • 2013
  • This paper presents a simple procedure to obtain the instantaneous cutting force constants needed to predict milling forces. Cutting force data measured in a series of slot milling tests were used to determine the cutting force constants at different feed rates. The values of the cutting force constants were determined directly at the tool rotation angle that maximized the uncut chip thickness. Then, the instantaneous cutting force constant was obtained as a function of the instantaneous uncut chip thickness. This approach can greatly enhance the accuracy of the mechanistic cutting force model for end milling. In addition, the influences of several cutting parameters on the cutting forces, such as the tool helix angle and axial depth of cut, were discussed.

Improvement of Cutting Conditions in End-milling Using Deep-layered Neural Networks (심층 신경회로망을 이용한 엔드밀 가공의 절삭 조건 개선)

  • Lee, Sin-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.402-409
    • /
    • 2017
  • Selection of optimal cutting conditions is important for improving productivity and implementing efficient process control in metal machining. In this study, improvement of cutting conditions in machining using end-mills is studied by using deep-layered neural networks, which comprise an input layer, output layer, and two hidden layers. System networks are designed with inputs as cutting conditions, and they output the cutting force. A pseudo-inverse network is designed that has the adjustable cutting condition as output and cutting force and other cutting conditions as input. The combination of the system network and pseudo-inverse network enables selection or improvement of cutting conditions that results in the expected cutting force.