• Title/Summary/Keyword: cutting

Search Result 7,450, Processing Time 0.038 seconds

Control of Tool Wear in Diamond Cutting of Steels by Intermittent Cutting Method (철강재료의 다이아몬드절삭에 있어서 단속절삭가공법의 적용에 의한 공구마모억제)

  • Chan, Song-Young;Kentaro, Nezu;Park, Chun-Hong;Toshimichi, Moriwaki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.40-46
    • /
    • 2008
  • Ultraprecision cutting of steels with geometrically defined single crystal diamond tools is handicapped by excessive tool wear. This paper presents a new approach to suppress the wear of single crystal diamond tool in cutting of steels. In general, it is said that the wear of diamond tool is caused by chemically reactive wear under high temperature and high pressure conditions. In order to suppress such chemical reactions, the time of contact between the diamond tool and the steel work in cutting was controlled by employing the intermittent cutting method such as fly-cutting. Series of intermittent cutting experiments have been carried out to control the tool-work contact time by changing one cycle of cutting length and cutting speed. The experimental results were shown that the tool wear was much dependent on the contact time regardless of the cutting speed, and that the wear was much suppressed by reducing the tool-work contact time. It is expected that the steels can be successfully cut with a single crystal diamond tool by controlling the contact time.

Effects of Laser Parameters and Workpiece Conditions on Cutting Characteristics of Solid Wood and Wood-based Panel(I) - Cutting Depths and Kerf Widths - (레이저변수(變數)와 피삭재조건(被削材條件)이 목재(木材) 및 목질(木質)보드의 절삭특성(切削特性)에 미치는 영향(影響)(I) - 절삭(切削)깊이와 절삭폭(切削幅) -)

  • Sim, Jae-Hyeon;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.75-91
    • /
    • 1997
  • Laser cutting tests were conducted to investigate the laser cutting characteristics of solid woods such as 25mm-thick white oak(Quercus acutissima) and maple(Acer mono), and wood-based panels such as 15mm-thick medium density fiberboard and particleboard. Test variables were laser power, cutting speed, grain direction, and moisture content. Cutting depths, kerf widths and the maximum cutting speed were measured. Cutting depths were increased as focus of laser beam was moving from above the workpiece to on the surface of workpiece, and also to below the workpiece. Kerf widths were decreased as focus of laser beam was moving from above the workpiece to on the surface of workpiece, but were increased as focus of laser beam was moving from on the surface of workpiece to below the workpiece. Minimum kerf widths were obtained when focus of laser beam was positioned on the surface of workpiece. Cutting depths and kerf widths were decreased with increase in moisture content, and cutting depths and kerf widths of more dense white oak were smaller than those of maple. And also cutting depths and kerf widths of particleboard were smaller than those of medium density fiberboard.

  • PDF

Studies on the Seed Production and Soiling Utilization of Italian Ryegrass on Paddy Field (답리작 이탈리안 라이그라스의 생육도중 청예이용이 종자생산에 미치는 영향)

  • 채재석;김영두;박태일;박호기;장영선
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.2
    • /
    • pp.124-131
    • /
    • 1995
  • In order to find out optimum seed production date according to different defoliation and flooding period of Italian ryegrass, this studies with Tetrone were canied out on the experimental field of Honam Crop Experiment Station from 1986 to 1988. Treatments included cutting date of Nov. 20 and Apr. 10 and flooding period of 5-25 days. In soil after experiment, organic matter, phosphate and silicate content increased, but potassium content decreased 0.16% than that before experiment. Heading and maturing date of Nov. 20 cutting were same with those of non cutting, those of Apr. 10 cutting lates 6 days to heading date and 2 days to maturing date. Plant height and culm length of Nov. 20 cutting were sirniller to those of non cutting, those of Apr. 10 cutting were shorter and panicle length have no difference between non cutting and cutting. Lodging of cutting treatment was reduced than that of non cutting. Lodgin was increased as flooding period was long, also loding of all treatment occured at 30 days after heading. Two cutting times of Nov. 20 and Apr. 10 have the most fresh yield, while non cutting have the most dry matter yield. Optimun seed productin date was considered to suitable when 35 days after heading (Jun. 14), at this time, seed production was 1,640 to 2,640 kg/ha. Also if flooding j u r y have, seed production was good between 10 days and 15 days after flooding.

  • PDF

Cutting Force Estimation Considering the Specific Cutting Force Constant (비절삭 저항상수에 따른 절삭력 예측)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.75-82
    • /
    • 2019
  • Few studies have been conducted regarding theoretical turning force modelling while considering cutting constant. In this paper, a new cutting force modelling technique was suggested which considers the specific cutting force coefficients for turning. The specific cutting force is the multiplication of the cutting force coefficient and uncut chip thickness. This parameter was used for experimental modelling and prediction of theoretical cutting force. These coefficients, which can be obtained by fitting measured average forces in several conditions, were used for the formulation of three theoretical cutting forces for turning. The cutting force mechanism was verified in this research and its results were compared with each of the experimental and theoretical forces. The deviation of force was incurred by a small amount in this model and the predicted force considering feed rate, nose radius, and radial depth shows a physical behavior in main force, normal force, and feeding force, respectively. Therefore, this modelling technique can be used to effectively predict three turning forces with different tool geometries considering cutting force coefficients.

Diagnosis of Cutting Stability of Portable Automatic Beveling Machine Using Spindle Motor Current (주축 모터를 이용한 포터블 자동 면취기의 가공 안정성 진단)

  • Kim, Tae Young;An, Byeong Hun;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.57-63
    • /
    • 2022
  • This study describes a system that monitors the tool and cutting state of automatic beveling operation in real time. As a signal for cutting state monitoring, a motor current detected from the spindle drive system of the automatic beveling machine is used to monitor abnormal state. Because automatic beveling is processed using a face milling cutter, the cutting force mechanism is the same as the milling process. The predicted cutting torque is obtained using a cutting force model based on specific cutting resistance. Then, the predicted cutting torque is converted into the spindle motor current value, and cutting state stability is diagnosed by comparing it with the motor current value detected during beveling operation. The experimental results show that the spindle motor current can detect abnormal cutting state such as overload and tool wear during beveling operation, and can diagnose the cutting stability using the proposed equip-current line diagram.

A study on the vibration cutting of high-hardness mold steel (고경도 금형강의 진동 가공에 대한 연구)

  • Kim, Jong-Su
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.39-43
    • /
    • 2022
  • In this study, we designed an vibration cutting tool that can achieve improvements such as low cutting force, interrupted chip evacuation and better surface quality of cutting performance to obtain high-quality surface roughness and improvement of tool wear, which is an issue in the machining of high-hardness mold steel. Among the resonance frequency modes of the vibration cutting tool, the bending mode was used to maximize the driving amplitude of the vibration tool tip, and the resonance frequency was confirmed through the finite element method. After measuring the actual resonant frequency of the designed tool using an optical fiber sensor, the cutting force and machining surface of vibration cutting and conventional cutting were compared and analyzed in the turning process of high hardness mold steel (STAVAX). As a result of the experiment, the cutting force was reduced by about 20 % compared to the conventional cutting process, and the surface roughness was also improved by about 60 %. This study suggested that the tool wear and surface quality of high-hardness steel can be improved through the vibration cutting method in the machining of high hardness mold steel.

A study on the characteristics of the convex surface machining in CNC milling (CNC 밀링에 의한 볼록곡면 가공시의 가공특성에 관한 연구)

  • Han, Heung-Sam;Lee, Dong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.45-51
    • /
    • 1995
  • In order to suggest the proper cutting conditons of the CNC milling machining for the free-form surface, some experments were carried out. In the experiments, the influence of cutting conditions on a inclined spherical surface were examined by geometrical analysis. In this study, the roundness and cutting force were measured to know the effect of several cutting conditions on the machined surface and the cutting characteristics were carefully investigated. The results obtained in this study are aw follows. 1) If the tool ha s enough rigidity, we can get better dimensional accuracy in up-ward cutting than down- ward cutting. 2) A great roundness error is appeared on the surface declined under 30 degress to the horizontal plane in circular machining by a bal end mill. 3) If the thrust force is increased, the stability of tool is decreased. And the phenomenon is apperared in great in down-ward cutting than up-ward cutting.

  • PDF

ADL Milling Characteristics for the Analysis of Cutting Force of Titanium Machining (티타늄 가공에서 절삭력 분석을 위한 ADL 밀링 가공특성)

  • Han, Jeong Sik;Jung, Jong Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.104-114
    • /
    • 2022
  • The purpose of using coolant in machining is both to increase a tool life and also to prevent product deformation and thus, stabilize the surface quality by lubricating and cooling the tool and the machining surface. However, a very small amount of cutting mist should be used because chlorine-based extreme pressure additives are used to generate environmental pollutants in the production process and cause occupational diseases of workers. In this study, medical titanium alloy (Ti-6Al-7Nb) was subjected to a processing experiment by selecting factors and levels affecting cutting power in the processing of the Aerosol Dry Lubrication (ADL) method using vegetable oil. The machining shape was a slot to sufficiently reflect the effect of the cutting depth. As for the measurement of cutting force, the trend of cutting characteristics was identified through complete factor analysis. The factors affecting the cutting force of ADL slot processing were identified using the reaction surface analysis method, and the characteristics of the cutting force according to the change in factor level were analyzed. As the cutting speed increased, the cutting force decreased and then increased again. The cutting force continued to increase as the feed speed increased. The increase in the cutting depth increased the cutting force more significantly than the increase in the cutting speed and the feed speed. Through the reaction surface analysis method, the regression equation for predicting cutting force was identified, and the optimal processing conditions were proposed. The cutting force was predicted from the secondary regression equation and compared with the experimental value.

Cutting force estimation using spindle and feeddrive motor currents in milling processes (밀링공정에서 이송모터와 주축모터의 전류신호를 이용한 절삭력 추정)

  • 김승철;정성종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1407-1410
    • /
    • 1997
  • Advanced sensor design and filtering technology have been studied to obtain information for condition monitoring and diagnostics inmachining processes. To develope and economic monitoring system in end milling processes, indirect and reliable type of cutting force estimators were required. In this paper, an estimation method of cutting forces during end milling processes was studied through the measurement of current signals obtained from spindle and feeddrive motors. Cutting force and torque models were derived from the cutting geometry in down milling processes. Relationships between motor currents and cutting forces were also developed in the form of AC and DC components from the developed force models. The validity of the cutting force estimator was confirmed by the experiments under various cutting conditions.

  • PDF

A Study on the Machinability of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 절삭성에 관한 연구)

  • Park, Jong-Nam;Kim, Jae-Yoel;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.128-133
    • /
    • 2010
  • The Titanium has many superior characteristics which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coated Tool which treated Physical Vapor Deposition. Experimental works are also executed to measure cutting force, tool wear, chip figuration and surface roughness for different cutting conditions. As a result of study. Cutting depth influences on the cutting force much more than the feed rate and the value of the cutting force is the most stable at the depth of 1.0mm. And tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.