• Title/Summary/Keyword: cutterhead intervention

Search Result 2, Processing Time 0.013 seconds

TBM mechanical characteristics for NFGM in mechanized tunnelling

  • Pill-Bae Hwang;Beom-Ju kim;Seok-Won Lee
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.477-486
    • /
    • 2024
  • The process of inspecting and replacing cutting tools in a shield tunnel boring machine (TBM) is called cutterhead intervention (CHI) (Farrokh and Kim 2018). Since CHI is performed by a worker who enters the chamber in TBM, the worker is directly exposed to high water pressure and huge water inflow, especially in areas with high ground water levels, causing health problems for the worker and shortening of available working hours (Kindwall 1990). Ham et al. (2022) proposed a method of reducing the water pressure and water inflow by injecting a grout solution into the ground through the shield TBM chamber, and named it the new face grouting method (NFGM). In this study, the TBM mechanical characteristics including the injection pressure of the grout solution and the cutterhead rotation speed were determined for the best performance of the NFGM. To find the appropriate injection pressure, the water inflow volume according to the injection pressure change was measured by using a water inflow test apparatus. A model torque test apparatus was manufactured to find the appropriate cutterhead rotation speed by investigating the change in the status of the grout solution according to the rotation speed change. In addition, to prove the validity of this study, comprehensive water inflow tests were carried out. The results of the tests showed that the injection pressure equal to overburden pressure + (0.10 ~ 0.15) MPa and the cutterhead rotation speed of 0.8 to 1.0 RPM are the most appropriate. In the actual construction site, it is recommended to select an appropriate value within the proposed range while considering the economic feasibility and workability.

Technology to reduce water ingress for TBM cutterhead intervention

  • Ham, Soo-Kwon;kim, Beom-Ju;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.321-329
    • /
    • 2022
  • Tunnel site where high water pressure is applied, such as subsea tunnel, generally selects the shield TBM (Tunnel Boring Machine) to maintain the tunnel excavation face. The shield TBM has cutters installed, and the cutters wear out during the process of excavation, so it should be checked and replaced regularly. This is called CHI (Cutterhead Intervention). The conventional CHI under high water pressure is very disadvantageous in terms of safety and economics because humans perform work in response to high water pressure and huge water inflow in the chamber. To overcome this disadvantage, this study proposes a new method to dramatically reduce water pressure and water ingress by injecting an appropriate grout solution into the front of the tunnel face through the shield TBM chamber, called New Face Grouting Method (NFGM). The tunnel model tests were performed to determine the characteristics, injection volume, and curing time of grout solution to be applied to the NFGM. Model test apparatus was composed of a pressure soil tank, a model shield TBM, a grout tank, and an air compressor to measure the amount of water inflow into the chamber. The model tests were conducted by changing the injection amount of the grout solution, the curing time after the grout injection, and the water/cement ratio of grout solution. From an economic point of view, the results showed that the injection volume of 1.0 L, curing time of 6 hours, and water/cement ratio of the grout solution between 1.5 and 2.0 are the most economical. It can be concluded that this study has presented a method to economically perform the CHI under the high water pressure.