• Title/Summary/Keyword: cutouts

Search Result 60, Processing Time 0.028 seconds

Lateral Vibration and Elastic Stability of Rectangular Plates with Cutouts (개구부를 가진 직사각형 평판구조의 진동 및 안정성 해석)

  • 이수곤;김순철;박근흥
    • Computational Structural Engineering
    • /
    • v.3 no.2
    • /
    • pp.77-88
    • /
    • 1990
  • Two perforated plates (a square plate and a rectangular plate having an aspect ratio 1.57(L/sub x/=11, L/sub y/=7)) are taken as analysis examples. Each of these plates is given some changes in the boundary conditions. The size of cutouts as well as their locations are also changed in order to examine the variation of two eigenvalues corresponding to the fundamental mode. The relationship between two eigenvalues is established by changing the magnitude of edge thrust.

  • PDF

Eigenfrequencies of simply supported taper plates with cut-outs

  • Kalita, Kanak;Haldar, Salil
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.103-113
    • /
    • 2017
  • Free vibration analysis of plates is necessary for the field of structural engineering because of its wide applications in practical life. Free vibration of plates is largely dependent on its thickness, aspect ratios, and boundary conditions. Here we investigate the natural frequencies of simply supported tapered isotropic rectangular plates with internal cutouts using a nine node isoparametric element. The effect of rotary inertia on Eigenfrequencies was demonstrated by calculating with- and without rotary inertia. We found that rotary inertia has a significant effect on thick plates, while rotary inertia term can be ignored in thin plates. Based on comparison with literature data, we propose that the present formulation is capable of yielding highly accurate results. Internal cutouts at various positions in tapered rectangular simply supported plates were also studied. Novel data are also reported for skew taper plates.

Buckling optimization of laminated composite plate with elliptical cutout using ANN and GA

  • Nicholas, P. Emmanuel;Padmanaban, K.P.;Vasudevan, D.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.815-827
    • /
    • 2014
  • Buckling optimization of laminated composite plates is significant as they fail because of buckling under in-plane compressive loading. The plate is usually modeled without cutout so that the buckling strength is found analytically using classical laminate plate theory (CLPT). However in real world applications, the composite plates are modeled with cutouts for getting them assembled and to offer the provisions like windows, doors and control system. Finite element analysis (FEA) is used to analyze the buckling strength of the plate with cutouts and it leads to high computational cost when the plate is optimized. In this article, a genetic algorithm based optimization technique is used to optimize the composite plate with cutout. The computational time is highly reduced by replacing FEA with artificial neural network (ANN). The effectiveness of the proposed method is explored with two numerical examples.

Buckling of axially compressed composite cylinders with geometric imperfections

  • Taheri-Behrooz, Fathollah;Omidi, Milad
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.557-567
    • /
    • 2018
  • Cylindrical shell structures buckle at service loads which are much lower than their associated theoretical buckling loads. The main source of this discrepancy is the presence of various imperfections which are created on the cylinder body during different processes as manufacturing, handling, assembling and machining. Many cylindrical shell structures are still designed against buckling based on the experimental data introduced by NASA SP-8007 as conservative lower bound curves. This study employed the numerical based Linear Buckling mode shape Imperfection (LBMI) method and modified it using a stochastic method to assess the effect of geometrical imperfections in more details on the buckling of cylindrical shells with and without the cutout. The comparison of results with those obtained from the numerical Simcple Perturbation Load Imperfection (SPLI) method for cylinders with and without cutout revealed a good correlation. The effect of two parameters of size and number of cutouts on the buckling load was investigated using the linear buckling and Modified LBMI methods. Results confirmed that in cylinders with a small cutout inserting geometrical imperfection using either SPLI or modified LBMI methods significantly reduced the value of the predicted buckling load. However, in cylinders with larger cutouts, the effect of the cutout is dominant, thus considering geometrical imperfection had a minor effect on the buckling loads predicted by both SPLI and modified LBMI methods. Furthermore, the modified LBMI method was employed to evaluate the combination effect of cutout numbers and size on the buckling load. It is shown that in small cutouts, an increasing in the cutout size up to a certain value resulted in a remarkable reduction of the buckling load, and beyond that limit, the buckling loads were constant against D/R ratios. In addition, the cutout number shows a more significant effect on decreasing the buckling load at small D/R ratios than large D/R ratios.

Investigation and Mitigation of Overvoltage Due to Ferroresonance in the Distribution Network

  • Sakarung, Preecha;Bunyagul, Teratam;Chatratana, Somchai
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.300-305
    • /
    • 2007
  • This paper reports an investigation of overvoltages caused by ferroresonance in the distribution system, which consists of a bank of open-delta single-phase voltage transformers. The high voltage sides of the voltage transformer are connected to the distribution system via three single-phase fuse cutouts. Due to the saturation characteristic of the transformer cores, ferroresonance can occur in the condition that the transformer is energized or deenergized with single-phase switching operation of the fuse cutouts. The simulation tool based on EMTP is used to investigate the overvoltages at the high side of voltage transformer. Bifurcation diagrams are used to present the ferroresonance behavior in ranges of different operating conditions. The simulation results are in good agreement with the results from the experiment of 22 kV voltage transformers. The mitigation technique with additional damping resistors in the secondary windings of the voltage transformers will be introduced. Brief discussion will be made on the physical phenomena related to the overvoltage and the damage of voltage transformer.

Identification and suppression of vibrational energy in stiffened plates with cutouts based on visualization techniques

  • Li, Kai;Li, Sheng;Zhao, De-You
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.395-410
    • /
    • 2012
  • The visualizing energy flow and control in vibrating stiffened plates with a cutout are studied using finite element method. The vibration intensity, vibration energy and strain energy distribution of stiffened plates with cutout at different excitation frequencies are calculated respectively and visualized for the various cases. The cases of different size and boundaries conditions of cutouts are also investigated. It is found that the cutout or opening completely changes the paths and distributions of the energy flow in stiffened plate. The magnitude of energy flow is significantly larger at the edges near the cutout boundary. The position of maximum strain energy distribution is not corresponding to the position of maximum vibrational energy. Furthermore, the energy-based control using constrained damping layer (CDL) for vibration suppression is also analyzed. According to the energy distribution maps, the CDL patches are applied to the locations that have higher energy distribution at the targeted mode of vibration. The energy-based CDL treatments have produced significant attenuation of the vibration energy and strain energy. The present energy visualization technique and energy-based CDL treatments can be extended to the vibration control of vehicles structures.

Parametric effects on geometrical nonlinear dynamic behaviors of laminated composite skew plates (적층된 복합소재 경사판의 기하학적 비선형 동적 거동에 미치는 매개변수 영향)

  • Lee, Sang-Youl
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.217-223
    • /
    • 2012
  • This study investigates a geometrical nonlinear dynamic behaviors of laminated skew plates made of advanced composite materials (ACM). Based on the first-order shear deformation plate theory (FSDT), the Newmark method and Newton-Raphson iteration are used for the nonlinear dynamic solution. The effects of cutout sizes, skew angles and lay up sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite plates with or without central cutouts, and the new results reported in this paper show the significant interactions between the cutout, skew angles and layup sequence in the laminate. Key observation points are discussed and a brief design guideline of skew laminates is given.