• Title/Summary/Keyword: cut foliage processing

Search Result 1, Processing Time 0.019 seconds

Effect of Dye-absorbing Duration and Environmental Conditions on Quality of Preserved Leaves in Eucalyptus cinerea (염료 흡수기간 및 환경조건이 유칼립투스의 보존엽 품질에 미치는 영향)

  • Lim, Young Hee;Kim, So Eun;Oh, Wook
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.390-399
    • /
    • 2014
  • The objective of this study was to establish a processing technology for preserved leaves based on the results from the examination of the optimal period and condition for dye-absorbing treatment for Eucalyptus cinerea F. Mull. ex Benth. (silver dollar eucalyptus) being used frequently as plant material for flower design. Cut foliages of E. cinerea with uniformly matured leaves were cut into 20 cm lengths and their lower stem parts were placed in dye solution in growth chambers with different temperatures (10, 20, 30, and $40^{\circ}C$), vapor pressure deficits (VPD; 0.23, 0.70, 1.17, and 1.61 kPa), and photoperiods (0, 6, 12, 24 hours) for 3, 6, 9, and 12 days, and then dried in a room of $20^{\circ}C$ for three days. Lower temperature during preserving dye treatment reduced the changes in leaf color compared with fresh leaves and decreased ${\Delta}E$ value. Especially, high temperature increased red degree (a) and decreased yellow degree (b) due to browning. Lower VPD reduced the change in leaf color compared with fresh leaves and decreased ${\Delta}E$ value. Shorter photoperiod reduced the change in leaf color compared with fresh leaves and decreased ${\Delta}E$ value. The ${\Delta}E$ value increased with increasing absorbing duration under three environmental conditions. The flexibility of stem and leaves after dipped into preserving dye solution and dried for 3 days increased with decreasing temperature, VPD and dipping duration. Therefore, the optimal environment condition for dye treatment was 0.23-0.70 kPa VPD at $10-20^{\circ}C$ in the darkness, and the optimal and economical duration was 3 days. These conditions reduced the speed of water loss by decreasing transpiration, so yellowing or browning by rapid water loss deteriorated the quality of preserved leaves out of these ranges.