• 제목/요약/키워드: cushioning variables

검색결과 4건 처리시간 0.016초

Influence of Cushioning Variables in the Workplace and in the Family on the Probability of Suffering Stress

  • Gonzalo, David Cardenas
    • Safety and Health at Work
    • /
    • 제7권3호
    • /
    • pp.175-184
    • /
    • 2016
  • Stress at work and in the family is a very common issue in our society that generates many health-related problems. During recent years, numerous studies have sought to define the term stress, raising many contradictions that various authors have studied. Other authors have attempted to establish some criteria, in subjective and not very quantitative ways, in an attempt to reduce and even to eliminate stressors and their effects at work and in the family context. The purpose of this study was to quantify so-called cushioning variables, such as control, social support, home/work life conciliation, and even sports and leisure activities, with the purpose of, as much as possible, reducing the negative effects of stress, which seriously affects the health of workers. The study employs data from the Fifth European Working Conditions Survey, in which nearly 44,000 interviewees from 34 countries in the European Union participated. We constructed a probabilistic model based on a Bayesian network, using variables from both the workplace and the family, the aforementioned cushioning variables, as well as the variable stress. If action is taken on the above variables, then the probabilities of suffering high levels of stress may be reduced. Such action may improve the quality of life of people at work and in the family.

고탄성 런닝화가 생체역학적 요소에 미치는 영향 (Effect of High Elastic Running Shoes on Biomechanical Factors)

  • Lee, Jungho
    • 한국운동역학회지
    • /
    • 제30권4호
    • /
    • pp.285-291
    • /
    • 2020
  • Objective: Shoes midsole are crucial for reducing impact forces on the lower extremity when someone is running. Previous studies report that the cushioning of running shoes make it possible to use less muscular energies. However, the well cushioned shoes result in energy loss as the shoe midsole is compressed. Cushioning reduces the load on the body, it also results in the use of more muscle energy to create propulsion force. The purpose of this study was to investigate the effect of the difference of shoe hardness & resilience on the running. Method: Shoes midsole are crucial for reducing impact forces on the lower extremity when someone is running. Previous studies report that the cushioning of running shoes make it possible to use less muscular energies. However, the well cushioned shoes result in energy loss as the shoe midsole is compressed. Cushioning reduces the load on the body, it also results in the use of more muscle energy to create propulsion force. The purpose of this study was to investigate the effect of the difference of shoe hardness & resilience on the running. Results: In vastus lateralis muscle Activation, Type 55 were significantly higher for Type 50 and X (p=0.019, p=0.045). In Gluteus Maximus muscle activation, Type 55 was significantly lower for type 50 (p=0.005). In loading late, Type 55 and X were significantly higher for type 45 (p=0.008, p=0.006). Conclusion: The components of a shoe are very complex, and there can be many differences in manufacturing as well. Although some differences can be found in the biomechanical variables of the high elastic midsole, it is difficult to interpret the performance enhancement and injury prevention.

Quantitative and Qualitative Differences according to the Shoe Type for the Grand Jete Landing in Ballet

  • Yi, Kyung-Ok;Park, Hye-Rhee
    • 한국운동역학회지
    • /
    • 제21권1호
    • /
    • pp.25-29
    • /
    • 2011
  • The purpose of this study was to analyze quantitative and qualitative differences according to shoe type for the grand jete landing in ballet. The subjects for this study were 9 female ballet majors with an average of 12 years of experience. Subjects jumped, performing a front split, and landed on 1 foot, a movement called the grand jete. Analysis was performed on the students' landing. Independent variables were 3 shoe types: split sole, traditional out sole, and 5-toed forefoot shoes, with bare feet as a control group. Dependent variables were vertical passive ground reaction force and qualitative elements. Passive ground reaction force variables(maximum passive peak value, number of passive peaks, passive force-time integral, and center of pressure) were measured by the Kistler 9281B Force Platform. Qualitative elements were comfort, cushioning, pain, and fit. Statistical analysis included both 1-way ANOVA and Tukey's test for follow-up. Finalized data demonstrated that the 5-toed forefoot shoe allows the forefoot to expand and the toes to individually press down upon landing, increasing foot contact with the surface. Five-toed forefoot shoes minimize passive peaks and pain, while increasing comfort, cushioning, and fit. Most ballet movements are composed of jumping, balancing, landing, and spinning. Wearing 5-toed forefoot shoes allows for a natural range of movement in each toe, to improve both technique and balance. Pain and injuries from ballet can be minimized by wearing the correct shoe type. According to this analysis, it is possible to customized ballet shoes to increase the efficiency of techniques and movements.

Analysis and Modelling of Vibration Performance for Multi-layered Corrugated Structure

  • Kim, Jin Nyul;Sim, Jae Min;Park, Min Jung;Kim, Ghi Seok;Kim, Jongsoon;Park, Jong Min
    • Journal of Biosystems Engineering
    • /
    • 제38권4호
    • /
    • pp.327-334
    • /
    • 2013
  • Purpose: The purpose of this study was to analyze for resonant frequency, vibration transmissibility and damping ratio of multi-layered corrugated structures using a random vibration test. Methods: The random vibration test was performed by the ASTM D4728 specifications using two paperboards (S120, K180) and two types of flutes (A/F, B/F). Damping ratio of the multi-layered corrugated structures was estimated using a theoretical equation derived from the measured resonant frequency and transmissibility. Results: The resonant frequency and vibration transmissibility of the multi-layered corrugated structures of K180 and B-flute were higher than those of S120 and A-flute, respectively; however, the damping ratio of each sample had the opposite tendency. The resonant frequency was inversely proportional to the sample thickness and static stress; vibration transmissibility and damping ratio were not correlated with sample thickness and static stress. In addition, we developed a mathematical model of the resonant frequency with variables of sample thickness and static stress. Conclusions: Results of this study can be useful for environment-friendly and optimal packaging design since vibration has been a key factor in cushioning packaging design.