• Title/Summary/Keyword: curvature analysis

Search Result 1,154, Processing Time 0.027 seconds

Strip Shape Analysis and Curvature Prediction of Front End Downward Bending in Plate Rolling by Finite Element Method (후판 압연중 발생하는 판의 하향벤딩시 선단부 판 형상의 고찰 및 곡률예측)

  • 이중형;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.110-114
    • /
    • 1997
  • The major object in this report is the curvature prediction of front end downward bending in plate rolling. Because of relations front end shape and curvature in plate, many simulations were carried out to obtain empirical model. Simulation conditions, for example the position and the size of bottom stripper or roller table etc., were limited to the POSCO conditions. Though the result in this report can be applied to the special case, the tendency of this result is similar to the many cases. So the empirical model equation can be improved or expanded to many simulation conditions.

  • PDF

The Curve Equation of a Flat Wiper Spring Rail Inducing Uniformly Distributed Loads (균일 분포하중을 주는 플렛와이퍼 스프링레일의 곡면형상식 유도)

  • Yoon, Young-Sam;Kim, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.79-83
    • /
    • 2010
  • Recently, the flat wiper which is one piece wiper and subjected to a pressing force at a single center point is gaining wide applications on automotive windshields. However, nonuniform reactive pressure distributions takes place, so that wiping is not completed at such locations. The wiping performance of the flat wiper is best when a wiper and a curved windshield have perfect contact without gaps under the specified pressing force of 13 ~ 15 gf/cm. Therefore, it is necessary that the realistic curvature equation of a wiper spring-rail should be obtained. Finite element analysis, CATIA script-macro function, and the least square method were utilized to find out the curvature of a spring-rail for a perfect contact with a windshield under a specified concentrated load. The curvature equation became the third order polynomial.

Simple Modeling for Laser Scribing (레이저 화선의 모델링)

  • Chung, Chulsup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.94-103
    • /
    • 2002
  • Accurately controlling the shape of the read/write head structure is critical in the performance of a modern hard disk drive. The sliders investigated are composed of alumina and titanium carbide (AlTiC) and act as an air bearing when passing over the disks. Controlling the curvature of the slider is of primary importance. A laser scribing system that produces curvature by Inducing residual stress into the slider can be utilized. Predicting the curvature created by a pattern of scribes is of great importance to increase the control over the sliders' shape. Using finite element analysis a force system that produces stresses similar to the laser scribing is applied. The curvatures created by the force system are calibrated to experimental measurements.

  • PDF

A Study on the Edge Construction of CMM Data Using a Method of Mean Curvature Block (평균곡률 구간법을 이용한 CMM 데이터의 경계 형성 연구)

  • Chang, Byoung-Chun;Kim, Dae-Il;Oh, Seok-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.74-80
    • /
    • 2010
  • The purpose of reverse engineering design using 3D measurement data is an accurate reconstruction of real body. In oder to accomplish this object, it is important that creating exact extracting edges should be studying out first of all. This study used edge-based method to find out edge point from the measuring point data. The characteristics are analysed using the mean curvature block method on the fitting NURBS curve and defined edges through block removal condition. The results showed that only using the NURBS curve of maximum curvature analysis to define correct edge of real geometry is limited, but this segmentation approach provides simplified necessary condition for edge classification, and an effectiveness to classify a straight line, curves and fillets etc.

Analysis of Deformation and Residual Curvature of Steel Sheets in Strip Process Lines (박강판 제조공정에서의 소재 굽힘변형과 잔류만곡 발생 해석)

  • 박기철;전영우;정기조
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.118-135
    • /
    • 1997
  • In order to analyze the deformation and residual curvature of steel sheets in the strip processing lines, a program for calculating curvature and work hardening of sheet was developed. Strip deformation caused by repeated bending under tension in the process lines was analyzed on the basis of the incremental-plasticity theory with the mixed hardenting model for the purpose of predicting the strip shape and the yield stress change. The developed calculation program was applied to predict curl and gutter of sheets within a 10% difference. The yield stress increment was also predicted with the similar accuracy. Application of the model to tension legvelling process showed that gutter could be controlled by intermesh and elongation. The yield stress increment in the electro-galvanizing line calculated by the developed program was found to be dependent on the yield strength, the applied tension and the diameter of the smallest roll.

  • PDF

Two Node Meridional Strain-based Axisymmetric Shell Elements (자오 변형률에 근거한 2절검 축대칭 셸요소)

  • Ryu, Ha-Sang;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.925-932
    • /
    • 1997
  • Two shear-flexible curved axisymmetric shell elements with two nodes, LCCS(linear curvature and constant strain) and CCCS(constant curvature and constant strain) are designed based on the assumed meridional strain fields and shallow shell geometry. At the element level, meridional curvature, membrane strain and shear strain fields are assumed by using polynomials and the displacement fields are obtained by integrating the assumed strain fields along the shallowly curved meridian. The formulated elements have high order displacement fields consistent with the strain field. Several test problems are given to demonstrate the performance of the two elements. Analysis results obtained reveal that the elements are very accurate in the displacement and the stress predictions.

Nonlinear Analysis of RC Beams Considering Fixed-End Rotation due to Bond-Slip (부착슬립에 의한 강체변형을 고려한 철근콘크리트 보의 비선형해석)

  • Kwak Hyo-Gyoung;Kim Sun-Pil
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.456-463
    • /
    • 2005
  • An analytical procedure to analyze reinforced concrete (RC) beams subject to monotonic loadings is proposed on the basis of the moment-curvature relations of RC sections. Unlike previous analytical models which result the overestimation of stiffnesses and underestimation of structural deformations induced from ignoring the shear deformation and assuming perfect-bond condition between steel and concrete, the proposed relation considers the rigid-body-motion due to anchorage slip at the fixed end. The advantages of the proposed relation, compared with the previous numerical models, are on the promotion in effectiveness of analysis and reflection of influencing factors which must be considered in nonlinear analysis of RC beam by taking into account the nonlinear effects into the simplifying moment-curvature relation. Finally, correlation studies between analytical and experimental results are conducted to establish the applicability of the proposed model to the nonlinear analysis of RC structures.

  • PDF

Kinematics Analysis of a 5-Axis Ultrasonic Inspection Equipment (5축 초음파 검사장비의 기구학 해석)

  • Han, Myung-Chul;Sung, Chang-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.89-96
    • /
    • 2015
  • In this paper, it is studied that kinematic analysis of a 5-axis ultrasonic inspection equipment. The equipment is comprised of three straight axes and two rotary axes. With features of ultrasonic, the transmitter and receiver of the equipment are vertical to a test surface, operating at regular intervals. To perform this well, the motions of every link should be found on the based of kinematic analysis of the equipment. We chose starting point for testing and defined relations among all links through transformation of coordinates. For double curvature-shaped test object, we generated test paths. To follow these, we found motions of all links using inverse kinematics. By using Matlab/Simulink, simulator was developed, so that we could find out desired trajectories of main axes for a scan.

Software for biaxial cyclic analysis of reinforced concrete columns

  • Shirmohammadi, Fatemeh;Esmaeily, Asad
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.353-386
    • /
    • 2016
  • Realistic assessment of the performance of reinforced concrete structural members like columns is needed for designing new structures or maintenance of the existing structural members. This assessment requires analytical capability of employing proper material models and cyclic rules and considering various load and displacement patterns. A computer application was developed to analyze the non-linear, cyclic flexural performance of reinforced concrete structural members under various types of loading paths including non-sequential variations in axial load and bi-axial cyclic load or displacement. Different monotonic material models as well as hysteresis rules, were implemented in a fiber-based moment-curvature and in turn force-deflection analysis, using proper assumptions on curvature distribution along the member, as in plastic-hinge models. Performance of the program was verified against analytical results by others, and accuracy of the analytical process and the implemented models were evaluated in comparison to the experimental results. The computer application can be used to predict the response of a member with an arbitrary cross section and various type of lateral and longitudinal reinforcement under different combinations of loading patterns in axial and bi-axial directions. On the other hand, the application can be used to examine analytical models and methods using proper experimental data.

A Study on Comparison of Combination Rules for the Seismic Analysis on Curved Bridges with the Different Radiuses of Curvature (곡선교의 내진 해석 시 곡률에 따른 하중 조합 방법의 비교에 관한 연구)

  • Ryu, Dong-Hyeon;Shin, Myoung-Gyu;Park, Jin-Wan;Kim, Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.567-572
    • /
    • 2008
  • This paper's purpose is to improve determining of the critical response of curved bridge to multi-component seismic motion. There are several methods to combine responses by multi-component excitation response, 30%, 40% rules and square-root-of-sum (SRSS). These combination rules determine same value of critical response in straight bridges. However, each method has critical response value of different magnitude in curved bridges. Thus a study about critical response of curved bridges is required. This paper presents comparison critical responses value as each combination rule, 30%, 40% rules and SRSS on curved bridges with the different radiuses of curvature. This study was carried out by response spectrum analysis of OO IC steel box girder bridge using SAP2000. It is concluded as follows: 1) In curved bridges, 30% and 40% rules tend to underestimate the critical response relatively to SRSS. 2) When bridges have smaller radiuses than 100m, difference between SRSS and 30% or 40% rules let run errors up as radiuses of curvature decreased.

  • PDF