• Title/Summary/Keyword: curvature analysis

Search Result 1,157, Processing Time 0.03 seconds

Analysis of the Curving Phenomenon of Curved T-Shaped Product by the Upper Bound Analysis and the $ DEFORM^{TM}$-3D in Eccentric Extrusion (굽은 T形 제품의 편심압출가공에 대한 상계굽힘해석과$ DEFORM^{TM}$-3D에 의한 굽힘 해석 비교)

  • 김한봉;김진훈;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.49-52
    • /
    • 1997
  • The kinematically admissible velocity field is developed for the analysis of the curving of an eccentric extrusion. The curving of product in extrusion is caused by the difference of the linearly distributed longitudinal velocity on the cross-section of the workpiece at the dies exit. The result of the analysis show that the curvature of product increases with the increase in eccentricity of gravity center of the cross-section of the workpiece at the die entrance from that of the cross-section at the die exit. It also increase with the die land dimension. By the DEFORMTM-3D analysis, the curving of T-shaped product in extrusion is changed by the eccentricity, die land length and the friction constant. The result of the analysis by DEFORMTM-3D software shows that the curvature of circular shaped product increases with the eccentricity. The two analysis and one experiment show the curving phenomenon in eccentric extrusion process.

  • PDF

Classification of Middle Aged Women's Breast Shapes Using 3D Body Measurement Data (3차원 인체 측정치들을 이용한 중년 여성의 유방 형태에 따른 유형)

  • Lee, Hyun-Young;Hong, Kyung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.3
    • /
    • pp.385-392
    • /
    • 2010
  • The breast types of middle-aged women of 80A (formerly 80B) size were classified through a 3D scanned nude body. Thirty seven measurements including the radius of curvature, surface area, volume, surface length, and breast displacements were used as input variables. We extracted five main factors through the factor analysis of the measurements and classified 36 subjects into 3 clusters through the cluster analysis. As a result of the factor analysis, the size of the breast, breast sag, the curvature of the inner and the outer breast curve, the width of the breast, and the nipple direction were found as the main factors. For the results of the classification of breast types, Cluster 1 was characterized by narrow breast width and unsymmetrical under the breast curve, whereas Cluster 2 was a wide and sagged shape. Cluster 3 was classified into big breast volume and symmetrical under-breast curve. The results are useful to the product development of high quality brassieres which reflect the 3D characteristics of breast types of middle-aged women.

Dynamic analysis and shear connector damage identification of steel-concrete composite beams

  • Hou, Zhongming;Xia, He;Zhang, YanLing
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.327-341
    • /
    • 2012
  • With the advantages of large span, light deadweight and convenient construction, the steel-concrete composite beam (SCCB) has been rapidly developed as a medium span bridge. Compared with common beams, the global stiffness of SCCB is discontinuous and in a staged distribution. In this paper, the analysis model for the simply-supported SCCB is established and the vibration equations are derived. The natural vibration characteristics of a simply-supported SCCB are analyzed, and are compared with the theoretical and experimental results. A curvature mode measurement method is proposed to identify the shear connector damage of SCCB, with the stiffness reduction factor to describe the variation of shear connection stiffness. By analysis on the $1^{st}$ to $3^{rd}$ vertical modes, the distribution of shear connectors between the steel girder and the concrete slab are well identified, and the damage locations and failure degrees are detected. The results show that the curvature modes can be used for identification of the damage location.

Equivalent Column Stiffness Equations for Design of RC Slender Columns under Later Loads (횡하중을 받는 철근콘크리트 장주설계를 위한 기둥의 등가강성식)

  • 이재훈
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.156-164
    • /
    • 1995
  • P-${\Delta}$ analysis by use of the equivalent colurnn stiffness determined by Momcnt curvature-Thrust curves provides relatively precise analytical results for unbraced reinforced concrete columns, however it needs a complicated arialytical procedure. Equ~valent col~rnn stiffness equations are proposed for a simple analytical procedure which are ckterrnined by the Moment-Curvature Thrust curves of the practically useable sections. Thc proposed stiffness equations are appiled to P-${\Delta}$ analysis and rnornent magnifier method to compare with the selected test result. Use of the proposed stiffness equations may slrnplify the P-${\Delta}$ i.rialvtica1 procedure and improve the accuracy of moment magnifier niethod.

Performance analysis tool for reinforced concrete members

  • Esmaeily, Asad;Peterman, Robert J.
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.331-346
    • /
    • 2007
  • A computer program was developed to analyze the non-linear, cyclic flexural performance of reinforced concrete structural members under various types of loading paths including non-sequential variations in axial load. This performance is significantly affected by the loading history. Different monotonic material models as well as hysteresis rules for confined and unconfined concrete and steel, some developed and calibrated against test results on material samples, were implemented in a fiber-based moment-curvature and in turn force-deflection analysis. One of the assumptions on curvature distribution along the member was based on a method developed to address the variation of the plastic hinge length as a result of loading pattern. Functionality of the program was verified by reproduction of analytical results obtained by others for several cases, and accuracy of the analytical process and the implemented models were evaluated against the experimental results from large-scale reinforced concrete columns tested under the analyzed loading cases. While the program can be used to predict the response of a member under a certain loading pattern, it can also be used to examine various analytical models and methods or refine a custom material model against test data.

A combined stochastic diffusion and mean-field model for grain growth

  • Zheng, Y.G.;Zhang, H.W.;Chen, Z.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.369-379
    • /
    • 2008
  • A combined stochastic diffusion and mean-field model is developed for a systematic study of the grain growth in a pure single-phase polycrystalline material. A corresponding Fokker-Planck continuity equation is formulated, and the interplay/competition of stochastic and curvature-driven mechanisms is investigated. Finite difference results show that the stochastic diffusion coefficient has a strong effect on the growth of small grains in the early stage in both two-dimensional columnar and three-dimensional grain systems, and the corresponding growth exponents are ~0.33 and ~0.25, respectively. With the increase in grain size, the deterministic curvature-driven mechanism becomes dominant and the growth exponent is close to 0.5. The transition ranges between these two mechanisms are about 2-26 and 2-15 nm with boundary energy of 0.01-1 J $m^{-2}$ in two- and three-dimensional systems, respectively. The grain size distribution of a three-dimensional system changes dramatically with increasing time, while it changes a little in a two-dimensional system. The grain size distribution from the combined model is consistent with experimental data available.

Analysis of Leveling Process of Sheet Steels by Elastic-Plastic Large Deformation Shell Elements (대변형 쉘 요소를 이용한 박 강판 형상교정 공정의 탄소성 유한요소 해석)

  • 박기철;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.319-322
    • /
    • 2003
  • For the analysis of leveling process by the 3-dimensional elastic-plastic finite element method, a finite element analysis program modeling large deformation of shell has been developed. This program fur analyzing large deformation of sheet during leveling includes spring-back analysis as well as efficient contact treatment between sheet and rolls of leveler. This is verified by the simple leveling experiment with 5 rolls at laboratory. Besides the leveling examples, problems within the category of large strain and rotation, such as 3-dimensional roll-up and gutter occurrence at continuous bending-unbending process are also tested for verification of the program. The residual curvatures of strip predicted by finite element analysis are within 20% error range of the experiment. The formation and direction of anticlastic curvature or gutter during bending-unbending under tension is predicted and this agrees with the experimental results.

  • PDF

Analysis of the Curving Phenomenon of Curved Circular Shaped Product by the Upper Bound Analysis and the DEFORMTM-3D in Eccentric Extrusion (곡봉(曲奉)의 편심압출가공에 대하여 상계굽힘해석과 DEFORMTM-3D에 의한 굽힘해 석 비교)

  • 김진훈;김한봉;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.45-48
    • /
    • 1997
  • The kinematically admissible velocity field is developed for the eccentric extrusion of circular shaped products. The curving of product in extrusion is caused by the difference of the linearly distributed longitudinal velocity on the cross-section of the workpiece at the dies exit. The results of the eccentric extrusion by upper bound analysis show that the curvature of product increases with the increase in eccentricity of gravity center of the cross-section of workpiece at dies entrance from that of the corss-section at the dies exit end. By the DEFORMTM-3D analysis, the curving of circular shaped product in extrusion is changed by the eccentricity, die land length and the die length. The result of the analysis by DEFORMTM-3D software shows that the curvature of circular shaped product increases with the eccentricity. The two analysis and one experiment show the curving phenomenon in eccentric extrusion process.

  • PDF

A Study of Spinal Curvature in Female and Male University Students (남녀 대학생의 척추만곡에 관한 연구)

  • Lee, Byung-Kyu;Nam, Ki-Seok;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.5 no.3
    • /
    • pp.72-87
    • /
    • 1998
  • This study examined the rates of spinal abnormal curvature and the correlation of the Body Mass Index (BMI), Low Back Pain (LBP) and spinal curvature by measuring scoliosis, kyphosis, and lordosis in university students. The study population included 67 male, 92 female university students, making a total of 159, in Wonju City. Spinal curvature was measured by an electrogoniometer in a computerized skeletal analysis system. Lateral curvature of spine of more than 10 degrees was considered as nonspostural scoliosis. The correlation of BMI, LBP and the spinal curvature was analysed by Pearson's correlation coefficient and t-test. The following results were obtained: 1. The overall incidence and rate of scoliosis in cases with a greater than 10 degree curve in males was an incidence of 8 and a rate of 11%. In females the incidence was 36 and the rate 39.2%. 2. The overall incidence and rate of kyphosis of less than 20 degrees in males was a rate of 9 and an incidence of 11.9%. In females, the rate was 5 and the incidence 5.4%. In kyphosis cases of more than 40 degrees, the male rate was 5 and the incidence 7.7%. For female the rate was 13 and the incidence 14.2%. 3. The overall incidence and rate of lordosis with curves of less than 20 degrees was a rate of 6 for males and an incidence of 9.0%. For females, the rate was 5 and the incidence 5.4%. In cases of more than 50 degrees lordosis, the female rate was 2 and the incidence 2.2%. There were no males in this category. 4. There was a negative correlation between kyphosis and BMI. The greater the kyphotic curve, the less the BMI in males (p<0.05). There was no significant BMI difference by gender in either scoliosis or lordosis. There was, however, a significantly decreased sacral angle in the female group with LBP. The results of this study cannot be generalized to the general population because the subjects were all from one university. The measurements were quite reliable because the angles determined by the Metrocom System were highly correlated with radiologic findings. This study shows the need for a regular screening system for spinal curvatures in university health examination procedures.

  • PDF

Shape Design Sensitivity Analysis using Isogeometric Approach (CAD 형상을 활용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF