• Title/Summary/Keyword: current-sensing circuit

Search Result 144, Processing Time 0.024 seconds

Sensorless Drive Circuit of a Switched Reluctance Motor using the Variation of Phase Currents (상전류 변화를 이용한 Switched Reluctance Motor의 Sensorless 구동회로)

  • Lim, J.Y.;Cho, K.Y.;Shin, D.J.;Kim, C.H.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.315-317
    • /
    • 1995
  • A simple drive circuit without position sensors for a switched reluctance motor is presented. The turn on and turn off points are determined by detecting the rate of change of the active phase current. The drive circuit consists of a current sensing resistor, RC filter, comparator, OP Amp, and OR gates. It is verified through the experiments that the switched reluctance motor with the proposed sensorless drive circuit is well operated in wide speed ranges.

  • PDF

New Switching signal Pattern in AC Chopper (교류초퍼에서 새로운 스위칭 신호패턴)

  • Jang, Do-Hyun;Yeon, Jae-Eul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1267-1269
    • /
    • 2000
  • New switching signal pattern for four switches is proposed to prevent the shortage of PWM ac choppers. In the proposed technique, four signals to four power switches are generated without current transformer, while the conventional technique requires sensing the polarity of input voltage by voltage comparator and checking the direction of input current by the current transformer. The signal circuit built by the proposed technique is simple, and reduces also the switching loss.

  • PDF

High Efficiency Bridgeless Power Factor Correction Converter With Improved Common Mode Noise Characteristics (우수한 공통 모드 노이즈 특성을 가진 브릿지 다이오드가 없는 고효율 PFC 컨버터)

  • Jang, Hyo-Seo;Lee, Ju-Young;Kim, Moon-Young;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.85-91
    • /
    • 2022
  • This study proposes a high efficiency bridgeless Power Factor Correction (PFC) converter with improved common mode noise characteristics. Conventional PFC has limitations due to low efficiency and enlarged heat sink from considerable conduction loss of bridge diode. By applying a Common Mode (CM) coupled inductor, the proposed bridgeless PFC converter generates less conduction loss as only a small magnetizing current of the CM coupled inductor flows through the input diode, thereby reducing or removing heat sink. The input diode is alternately conducted every half cycle of 60 Hz AC input voltage while a negative node of AC input voltage is always connected to the ground, thus improving common mode noise characteristics. With the aim to improve switching loss and reverse recovery of output diode, the proposed circuit employs Critical Conduction Mode (CrM) operation and it features a simple Zero Current Detection (ZCD) circuit for the CrM. In addition, the input current sensing is possible with the shunt resistor instead of the expensive current sensor. Experimental results through 480 W prototype are presented to verify the validity of the proposed circuit.

A Simple Continuous Conduction Mode PWM Controller for Boost Power Factor Correction Converter

  • Tanitteerapan, Tanes;Mori, Shinsaku
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1030-1033
    • /
    • 2002
  • This paper, a new simple controller operates in continuous conduction mode (CCM) for Boost power factor collection converter is introduced. The duty ratios are obtained by comparisons of a sensed signal from inductor current and a negative ramp carrier waveform in each switching period. By using the proposed controller, input voltage sensing, error amplifier in the current feedback loop, and analog multiplier/divider are not required, then, the control circuit implementation is very simple. To verify the proposed controller, the circuit simulation for Boost power factor correction converter was applied. For the results, the input current waveform was shaped to be closely sinusoidal, implying low THD.

  • PDF

Improved Bridgeless Interleaved Boost PFC Rectifier with Optimized Magnetic Utilization and Reduced Sensing Noise

  • Cao, Guoen;Kim, Hee-Jun
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.815-826
    • /
    • 2014
  • An improved bridgeless interleaved boost power factor correction (PFC) rectifier to improve power efficiency and component utilization is proposed in this study. With combined conventional bridgeless PFC circuit and interleaved technology, the proposed rectifier consists of two interleaved and magnetic inter-coupling boost bridgeless converter cells. Each cell operates alternatively in the critical conduction mode, which can achieve the soft-switching characteristics of the switches and increase power capacity. Auxiliary blocking diodes are employed to eliminate undesired circulating loops and reduce current-sensing noise, which are among the serious drawbacks of a dual-boost PFC rectifier. Magnetic component utilization is improved by symmetrically coupling two inductors on a unique core, which can achieve independence from each other based on the auxiliary diodes. Through the interleaved approach, each switch can operate in the whole line cycle. A simple control scheme is employed in the circuit by using a conventional interleaved controller. The operation principle and theoretical analysis of the converter are presented. A 600 W experimental prototype is built to verify the theoretical analysis and feasibility of the proposed rectifier. System efficiency reaches 97.3% with low total harmonic distortion at full load.

Development of Protection Device for Voltage Unbalance Faults using Three-Phase Neutral Voltage (삼상 중성점 전압을 이용한 전압불평형 사고 방지용 보호장치 개발)

  • Kwak, D.K.;Kim, D.S.;Kim, J.H.;Kim, S.C.;Jung, W.S.;Son, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.621-622
    • /
    • 2012
  • The thermal over-current relay or electronic motor protection relay is mostly used as the open-phase detection device of the three-phase motor or load. When the over-current or overheat of electric line is generated, it detects and operates circuit breaker, but there is the defect that the sensing speed is slow, the operation can be sometimes failed, and the precision is decreased. In order to improve these problems, this paper is proposed a new control circuit topology for open-phase protection using semiconductor devices. Therefore, the proposed open-phase protection device enhances the sensing speed and precision, and has the advantage of simple fitting in the three-phase motor control panel in the field, as it manufactures into small size and light weight.

  • PDF

Single Phase Active Rectifier with Power Factor Correction For Inverter Air-Conditioner (인버터 에어컨용 역률제어기능을 갖는 단상능동정류기)

  • 정용채;권경안
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.31-34
    • /
    • 1998
  • In this paper, a Single-phase Active Rectifier(SAR) with high power factor capability for inverter air-conditioner is adopted for satisfying the international standards of input current harmonics, IEC 1000-3-2. Comparing the conventional boost power factor correction circuit, one diode drop is reduced in the power flow path of the SAR circuit, so the system efficiency is improved. To apply the control IC, such as UC3854, ML4821 and so forth, to the SAR, the adequate sensing circuits are proposed. The design rules of passive components and two control loops are also presented. The prototype SAR circuit with 3㎾ power consumption is builted and tested to verify the operation of the proposed circuit.

  • PDF

A Fully-Differential Correlated Doubling Sampling Readout Circuit for Mutual-capacitance Touch Screens

  • Kwon, Kihyun;Kim, Sung-Woo;Bien, Franklin;Kim, Jae Joon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.349-355
    • /
    • 2015
  • A fully-differential touch-screen sensing architecture is presented to improve noise immunity and also support most multi-touch events minimizing the number of amplifiers and their silicon area. A correlated double sampling function is incorporated to reduce DC offset and low-frequency noises, and a stabilizer circuit is also embedded to minimize inherent transient fluctuations. A prototype of the proposed readout circuit was fabricated in a $0.18{\mu}m$ CMOS process and its differential operation in response to various touch events was experimentally verified. With a 3.3 V supply, the current dissipation was 3.4 mA at normal operation and $140{\mu}A$ in standby mode.

Capless Low Drop Out Regulator With Fast Transient Response Using Current Sensing Circuit (전류 감지 회로를 이용한 빠른 과도응답특성을 갖는 capless LDO 레귤레이터)

  • Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.552-556
    • /
    • 2019
  • This paper present a capless low drop out regulator (LDO) that improves the load transient response characteristics by using a current regulator. A voltage regulator circuit is placed between the error amplifier and the pass transistor inside the LDO regulator to improve the current characteristics of the voltage line, The proposed fast transient LDO structure was designed by a 0.18 um process with cadence's virtuoso simulation. according to test results, the proposed circuit has a improved transient characteristics compare with conventional LDO. the simulation results show that the transient of rising increases from 1.954 us to 1.378 us and the transient of falling decreases from 19.48 us to 13.33 us compared with conventional capless LDO. this Result has improved response rate of about 29%, 28%.

An OLED Pixel Circuit Compensating Threshold Voltage Variation of n-channel OLED·Driving TFT (n-채널 OLED 구동 박막 트랜지스터의 문턱전압 변동을 보상할 수 있는 OLED 화소회로)

  • Chung, Hoon-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.3
    • /
    • pp.205-210
    • /
    • 2022
  • A novel OLED pixel circuit is proposed in this paper that uses only n-type thin-film transistors(TFTs) to improve the luminance non-uniformity of the AMOLED display caused by the threshold voltage variation of an OLED driving TFT. The proposed OLED pixel circuit is composed of 6 n-channel TFTs and 2 capacitors. The operation of the proposed OLED pixel circuit consists of the capacitor initializing period, threshold voltage sensing period of an OLED·driving TFT, image data voltage writing period, and OLED·emitting period. As a result of SmartSpice simulation, when the threshold voltage of·OLED·driving TFT varies from 1.2 V to 1.8 V, the proposed OLED pixel circuit has a maximum current error of 5.18 % at IOLED = 1 nA. And, when the OLED cathode voltage rises by 0.1 V, the proposed OLED pixel circuit has very little change in the OLED current compared to the conventional OLED pixel circuit. Therefore, the proposed pixel circuit exhibits superior compensation characteristics for the threshold voltage variation of an OLED driving TFT and the rise of the OLED cathode voltage compared to the conventional OLED pixel circuit.