• Title/Summary/Keyword: current-induced magnetization precession

Search Result 2, Processing Time 0.014 seconds

Spin Transfer Torque in Ferromagnet-Normal Metal-Antiferromagnet Junctions

  • Lee, Hyun-Woo;Yang, Hyun-Soo
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.92-96
    • /
    • 2011
  • This study investigated theoretically the properties of the spin transfer torque acting on a ferromagnet in a ferromagnet-normal metal-antiferromagnet junction. Earlier work showed that the angular dependence of the spin transfer torque can be a wavy-type if the junction satisfies a special symmetry. This paper reports a simple model analysis that allows a derivation of the wavy angular dependence without taking advantage of the symmetry. This result suggests that the wavy angular dependence can appear even when the symmetry is broken. As an illustration, the angular dependence was calculated as a function of the degree of the compensation at the normal metal-antiferromagnet interface. The implications of the result for the current-induced magnetization precession are discussed.

Effect of Energy Barrier Distribution on Current-Induced Magnetization Switching with Short Current Pulses (짧은 전류 펄스를 이용한 전류 유도 자화 반전에서 에너지 장벽 분포의 효과)

  • Kim, Woo-Yeong;Lee, Kyung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.48-51
    • /
    • 2011
  • We performed macro-spin simulation studies of the current-induced magnetization reversal of nanomagnetic elements with short current pulses. A special attention was paid to the effect of the energy barrier on the switching current distribution. The switching current and its distribution increase with decreasing the current pulse-width. The relationship between the energy barrier and switching current distribution is described by the Arrhenius-N$\'{e}$el law at a long pulse-width regime. At a regime of short pulse-width, however, the relationship is left unaddressed. The difficulty to address this issue arises because the magnetization switching with a short current pulse is governed not by the thermal activation but by the precession motion. Therefore, an exact formulation for the short pulse regime by solving the Fokker-Plank equation is needed to understand the result.