• 제목/요약/키워드: current variable control

검색결과 545건 처리시간 0.032초

브리지형 PWM 변환기 전류제어를 위한 새로운 스위칭 방법의 응용 (Applications of A New Current Control witching Strategy for The Bridge Type PWM Converters)

  • 권병헌;오원석;조규민;인치각
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1182-1186
    • /
    • 2000
  • In many applications of the bridge type PWM converters as like inverters. AC/DC PWM converters or active power filters, it is necessary to control the input/output current. This paper presents a new current control switching strategy for the bridge type PWM converters. And variable speed motor control applications fed by current controlled inverter, PWM AC/DC converter applications. active power filter applications and class-D amplifier applications using the proposed new current control switching method are shown.

  • PDF

Design of BLDC Motor Controller for Electric Power Wheelchair

  • Chu, Jun-Uk;Moon, In-Hyuk;Choi, Gi-Won;Ryu, Jei-Cheong;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1509-1512
    • /
    • 2003
  • The electric power wheelchair needs to control motor torque and speed for responding to variable actions given by handling a joystick. In this paper a DSP-based BLDC motor controller using a single dc-link current sensor is presented for electric power wheelchair. It is composed by a DSP processor and three-phase inverter module. To control torque, high speed current control is achieved by the PI controller and pulse width modulation (PWM) signals with 25 kHz carrier frequency, which is performed by 200 ${\mu}sec$ cycle. The speed controller computes the new direct current reference from the speed error and the PI control equation. The displacement value by handling the joystick is converted to reference speeds of right and left wheel motors using nonholonomic wheelchair kinematics. Experimental results show that the presented control system is enough to implement a speed servo in wheelchair driving.

  • PDF

Sliding Mode Control with Fixed Switching Frequency for Four-wire Shunt Active Filter

  • Hamoudi, Farid;Chaghi, A. Aziz;Amimeur, Hocine;Merabet, El Kheir
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.647-657
    • /
    • 2011
  • The present paper proposes a sliding mode control with fixed switching frequency for three-phase three-leg voltage source inverter based four-wire shunt active power filter. The aim is to improve phase current waveform, neutral current mitigation, and reactive power compensation in electric power distribution system. The performed sliding mode for active filter current control is formulated using elementary differential geometry. The discrete control vector is deduced from the sliding surface accessibility using the Lyapunov stability. The problem of the switching frequency is addressed by considering hysteresis comparators for the switched signals generation. Through this method, a variable hysteresis band has been established as a function of the sliding mode equivalent control and a predefined switching frequency in order to keep this band constant. The proposed control has been verified with computer simulation which showed satisfactory results.

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

Novel SRM Drive Systems Using Variable DC-Link Voltage

  • Jang, Do-Hyun
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.285-293
    • /
    • 2011
  • This paper proposes two SRM driving systems using a variable dc-link voltage controlled by a single-phase inverter. Two SRM converter topologies of a half bridge type and a full bridge type are proposed according to the power circuits of an inverter. The phase current can be controlled by means of a PWM controller at the inverter, and the turn-on/off angle at the phase switches can be controlled by a position sensor at the converter in the drive system. The inverter acts as a peak-current limiter if the transient current exceeds its maximum value. SRMs using the proposed topologies maintain high efficiency due to energy regeneration after the turn-off of power switches. The operational modes of the proposed topologies are verified by simulation and experimental results.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

가변 출력 영전압 스위칭 PWM 컨버터에 관한 연구 (A study on ZVS-PWM Converter with Variable Output)

  • 김영재;임상언;김희준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.364-368
    • /
    • 1999
  • This paper suggests switching regulator technique to overcome the drawback of conventional variable linear power supply. Switching regulator technique can eliminate the extremely lossy operation and reduce the size and weight of variable linear power supply and provide nearly constant output power over the majority of output voltage range. The topology of variable switched mode power supply is employed active clamp forward converter with a current doubler rectifier and by using control of variable-frequency together with control of fixed-frequency, output voltage can be controled. Equivalent circuits pertinent to each operational mode of converter are derived, and an experimental 20V, 50A converter was designed and built. The converter operates from an output voltage of zero to 25 V, under 100 kHz switching frequency.

  • PDF

가변 위상각제어에 의한 에너지절감형 단상유도전동기에 관한 연구 (A Study on the Energy Saving SPIM Using Variable Phase Angle Control)

  • 박수강;백형래;이상일;임양수;최낙일
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.522-525
    • /
    • 1999
  • This paper describes a simple but effective method for energy saving of ac motors having a widely variable load. The proposed method is based on an optimal efficiency control which is operated by voltage-current pattern such as to maintain the maximum efficiency on the efficiency-output characteristics of the motor, in voltage control with triac. In this paper, authors present the experimental results of the SPIM under controlling of current of main and auxiliary winding by using a one chip microcontroller. Experiments are focused on a capacitor stating single phase induction motor the optimal energy saving are proved by the proposed method.

  • PDF

액정디스플레이 후광 인버터 구동 IC (LCD Backlight Inverter Drive IC)

  • 정동열;장천섭;이승주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2568-2571
    • /
    • 2002
  • A LCD backlight inverter control IC based on the piezoelectric transformer (PZT) for Cold Cathode Fluorescent Lamp (CCFL) lighting is proposed. It is indeed a variable frequency, variable duty (VFVD) controller having dual feedback control loops for achieving both the regulation of lamp current and the maximum efficiency. The PWM controller regulates the lamp current, while the PLL controller tunes the operating frequency to the frequency that the efficiency of the combined LC-PZT resonator becomes maximum. The mixed PLL/PWM control technique lets the backlight inverter operate at the maximum efficiency in spite of the variation of component and environment. The controller features include a protection for an open or broken lamps, and an open lamp regulation.

  • PDF

Design and application of a novel eddy current damper for a high-rise sightseeing tower

  • Kaifang Liu;Yanhui Liu;Chia-Ming Chang;Ping Tan
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.573-587
    • /
    • 2023
  • A conventional tuned mass damper (TMD) provides a passive control option to suppress the structures' wind- or earthquake-induced vibrations. However, excessive displacements of the TMD raise concerns in the practical implementation. Therefore, this study proposes a novel TMD designed for and deployed on a high-rise sightseeing tower. The device consists of an integrated two-way slide rail mount and an eddy current damper (ECD) with a stroke control mechanism. This stroke control mechanism allows the damping coefficient to automatically increase when the stroke reaches a predetermined value, preventing excessive damper displacements during large earthquakes. The corresponding two-stage damping parameters are designed with a variable-thickness copper plate to enable the TMD stroke within a specified range. Thus, this study discusses the detailed design schemes of the device components in TMD. The designed two-stage damping parameters are also numerically verified, and the structural responses with/without the TMD are compared. As seen in the results, the proposed TMD yields effective control authority to limit the acceleration response within a comfort level. In addition, this TMD resolves the spatial availability for the damper movement in high-rise buildings by the controllable damping mechanism.