• Title/Summary/Keyword: current unbalance

Search Result 263, Processing Time 0.029 seconds

The measurement & Analysis of Voltage, Current and Load Unbalance Factor at Three Phase Four Wire Load System (3상 4선식 부하설비의 전압, 전류 및 부하 불평형율 측정 분석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Dong-Ju;Lee, Jong-Han;Jeong, Jong-Ho;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.28-30
    • /
    • 2005
  • This paper presents a scheme on the characteristics of voltage and current unbalance factor under the load variation at the three phase 4-wire system. The voltage unbalance factor of the three-phase 4-wire system is approved by the field measurement. This system is composed of three one-phase transformer with each other capacity. Current unbalance factor is measured by the power quality measurement apparatus and compared by the load unbalance factor. Each phase has an impedance each other by the unbalanced load operation pattern and give rise to voltage unbalance.

  • PDF

Field Measurement and Analysis of Voltage Unbalance Factor (전압불평형율의 현장측정 및 분석)

  • Jeong, Jong-Ho;Park, Young-Jeen;Lee, Eun-Woong;Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Most of LV customer have applied the 3-phase four wire system distribution system because it has advantage of supplying both of 1-phase & 3-phase loads simultaneously. Due to its structural simplicity, it is more convenient for use rather than the conventional separated scheme. But voltage unbalance more commonly emerges in individual customer loads due to phase load unbalance, especially where, single-phase power loads are used. Voltage unbalance factor(VUF) represents the loss of symmetry in the supply(magnitude and angle). It leads some problems such as de-rating or power losses. In this paper, voltage and current waveform in the actual fields have been measured and analyzed in relation with internationally allowable voltage unbalance limits.

Input Current Characteristics of a Three-Phase Diode Rectifier with Capacitive Filter under Line Voltage Unbalance Condition (커패시터 필터를 갖는 3상 다이오드 정류회로의 불평형전원에서의 입력전류 특성)

  • 정승기;이동기;박기원
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.348-361
    • /
    • 2001
  • The three-phase diode rectifier with capacitive filter is highly sensitive to line voltage unbalance. Because of its inherent nonlinear characteristics, small line voltage unbalance may cause highly unbalanced line current, causing detrimental effects on power quality. This paper presents a theoretical basis on this 'unbalance amplification effect' and derives an analytical model of line current characteristics under unbalanced line voltage condition for various modes of operation. The results provide a basic guideline for optimal design of a three-phase diode rectifier with capacitive filter that is most commonly used for interfacing various power conversion equipments to power lines.

  • PDF

A Current Controller with the Compensation of the Input Voltage Unbalance and Distortion for Three Phase PWM Rectifier (전원전압의 불평형 및 왜곡 보상기능을 갖는 3상 PWM 정류기의 전류제어기)

  • Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.594-601
    • /
    • 2011
  • In this paper, a new current controller with the compensation of an unbalance and distorted grid voltages has been proposed. Generally, in the three-phase power system, single phase or nonlinear loads can be connected with the 3 phase linear load simultaneously on the same point of common coupling. Therefore, The source voltage unbalance and distortion problem can be occurred. Under these unbalance and distorted grid voltage conditions, the input current of 3 phase PWM rectifiers also have unbalance and distortion. In this paper, a current controller with the simple Model Reference Adaptive System based unbalance and distorted voltages observer is proposed to get a sinusoidal input current. The performance of the proposed algorithm is verified through the simulation and the experiment.

Analysis and compensation of the current unbalance considering dynamic characteristic of feeding traction loads (철도 부하의 동적 특성을 고려한 전류 불평형의 분석과 보상)

  • 김기표;김진오
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • Feeding traction loads from the public power system may lead to some current and voltage unbalance and consequently affects the operation of its energy-supply system and other equipment connected with it. This paper introduces an analysis of the current unbalance caused by the demands of an electric railway on a public power system. And the results with compensator and without compensator are simulated, and eventually the formula about the current unbalance is suggested. The Scott-connected transformer is adopted in Korea National Railway System. So Scott-connected transformer among the various transformer connection schemes is analyzed in this paper. Also, the formulas about the unbalance and compensating current can be derived by using two parameters(M-phase and T-phase current) of secondary Scott-connected transformer. So, the practical and accurate simulation can be done through dynamic models by using scheduling of traction.

Characteristics Analysis for Voltage, Current & Capacity of Condenser at Voltage Unbalance (전압 불평형시 콘덴서 전압, 전류, 용량 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.145-151
    • /
    • 2010
  • Voltage unbalance is regarded as a power quality problem of significant at the user application. Although the voltages are quite well balanced at the transmission system, the voltage level of utilization can be unbalanced due to the unequal system impedances and the unequal distribution of single phase loads. Capacitor is generally used for power-factor compensation and reducing harmonics of non linear load with reactor. If voltage unbalance exists, current unbalance is generated and it will be reflected in the capacity variance. When the reactor and condenser are used at the same location, generally its trouble rate is high. And it is very important checking out that how the variance of voltage, current and capacity of condenser is proceeded by the voltage unbalance. In this paper, we calculated that voltage, current and capacity of condenser are within the tolerance limit of official regulations in the event of voltage unbalance with/without reactor.

The Compensation of the Grid Current Distortion caused by the Grid Voltage Unbalance and Distortion for 3-Phase Bi-Directional DC to AC Inverter (3상 양방향 인버터의 계통전압 불평형 및 왜곡에 의한 계통전류 보상)

  • Yang, Seung-Dae;Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;Lee, Sang-Cheol;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.228-234
    • /
    • 2012
  • This paper presents the algorithm of the compensation of the grid current distortion caused by the grid voltage unbalance and distortion in 3-phase bi-directional DC to AC inverter. Usually 3-phase grid system has unbalance and distortion because of connecting 1-phase and non-linear load with 3-phase load using same input node. Controlling 3-phase inverter by general method under the unbalanced and distorted grid voltage, the grid current has distortion. This distortion of the grid current cause the grid voltage distortion again. So, it need to control the grid current balanced and non-distorted, even the grid voltage gets unbalanced and distorted. There are some complex method to compensate the gird current distortion. it sugest simple method to solve the problem. PSIM simulation is used to validate the proposed algorithm.

The Comparison Study for Voltage, Current and Load Unbalance Factor (전압, 전류 및 부하 불평형율에 대한 비교 연구)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Park, Jong-Ho;Lee, Eun-Wong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.115-120
    • /
    • 2004
  • Most of the LV customer have been applied the distribution system of 3-phase four wire system because of its advantage of supplying both of 1-phase & 3-phase loads simultaneously. Due to its structural simplicity, it is more convenient for use rather than the conventional separated scheme. But uneven load distribution or unclean voltage quality has occurred various problems such as do-rating, losses increase and vibration, etc. In this paper, voltage, current and power waveform in the actual fields have measured and analyzed in relation with internationally allowable voltage unbalance limits and compared the current unbalance factor with the load unbalance factor.

  • PDF

Integrative Control of Series Active Power Filters for Source Voltage Unbalance Compensation and Power Factor Correction (전원 불평형과 역률을 보상하는 직렬형 능동전력필터의 통합적 제어)

  • Jang, Jeong-Ik;Seok, Jul-Ki;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.258-264
    • /
    • 2006
  • This paper presents an integrative control scheme for series-type active power filters combined with shunt passive filters not only to compensate for the source voltage unbalance and current harmonics but also to correct the power factor. To reduce the power capacity of the active filters, passive filters are connected in parallel. Diode rectifiers are replaced by the PWM converters in order to feed the real power back to the source. Power factor control is performed by changing the phase of the load voltage so that the phase of the source current coincides with that of the source voltage. The resultant voltage reference is the addition of the voltage component compensating for the source voltage unbalance and harmonic currents and the voltage component correcting the power factor. The validity of the proposed algorithm has been verified by experimental results.

Input Current Characteristics of a Three-Phase Diode Rectifier with Capacitive Filter Under Line Voltage Unbalance Condition (커패시터 필터를 갖는 3상 다이오드 정류회로의 불평형전원에서의 입력전류 특성)

  • Lee Dong-Gei;Park Gei won;Jung Seong Gei
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.569-575
    • /
    • 2001
  • The three-phase diode rectifier with capacitive Inter is highly sensitive to line voltage unbalance. Because of its inherent nonlinear characteristics small line voltage unbalance may cause highly unbalanced line current causing detrimental effects on power quality. This paper presents a theoretical basis on this 'unbalance amplification effect' and derives an analytical model of line current characteristics under unbalanced line voltage condition for various modes of operation. The results provide a basic and important guideline for optimal design of a three-phase diode rectifier with capacitive filter that is most commonly used for interfacing various power conversion equipments to power lines.

  • PDF