• Title/Summary/Keyword: current turbine

Search Result 464, Processing Time 0.022 seconds

Comparison of Characteristics for Variable Operation using Doubly-fed Induction Generator and Fixed Speed Operation in Wind Turbine System (이중여자 유도발전기를 이용한 가변속운전과 정속운전 풍력발전시스템의 운전특성 비교)

  • Ro, Kyoung-Soo;Kim, Tae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1313-1320
    • /
    • 2009
  • This paper analyzes the steady-state operating characteristics of doubly-fed induction generator(DFIG) and fixed-speed induction generator(FSIG) in wind turbine system. It also presents a modeling and simulation of a grid-connected wind turbine generation system for dynamics analysis on MATLAB/Simulink, and compares the responses between DFIG and FSIG wind turbine systems with respect to wind speed variation, 3-phase fault and 1-phase ground fault of the network. Simulation results show the variations of generator's active/reactive output, rotor speed, terminal voltage, fault current, etc. Case studies demonstrate that DFIG illustrates better performance compared to FSIG.

An Overview of the Gas Turbine & Tubomachinery Business at Samsung Aerospace Ind.,Ltd. (삼성항공의 가스터빈 사업 현황)

  • 정영기
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.104-108
    • /
    • 1999
  • Samsung Aerospace Ind., Ltd. (SSA) has been involved in gas turbine and turbomachinery businesses since 1980. An overview is given of its gas turbine overhaul, parts manufacturing, and industrial turbo machinery businesses. It is hoped that interested people will find the current status and capabilities of Korean gas turbine industry as represented by SSA's Gas Turbine & Turbomachinery Division.

  • PDF

Simplified Wind Turbine Modeling and Calculation of PCC Voltage Variation according to Grid Connection Conditions (간략화된 풍력발전기 모델링과 계통연계 조건에 따른 PCC 전압 변동량 계산)

  • Im, Jl-Hoon;Song, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2402-2409
    • /
    • 2009
  • This paper proposed a simple and helpful analysis model of voltage variation in order to predict the voltage variation at PCC (Point of Common Coupling), when a wind turbine is connected in an isolated grid. The PCC voltage flucuates when the wind turbine outputs active power to an isolated grid. This voltage variation is proportional to the product of the line impedance from the ideal generator to the PCC and the wind turbine output current. And It is different according as where wind turbine is connected. To solve the problem of voltage variation, this paper proposed the reactive power control. To verify the proposed analysis model, this paper utilized PSCAD/EMTDC Simulation and the field measurement data of the voltage variation during the wind power generation.

Damping for Wind Turbine Electrically Excited Synchronous Generators

  • Tianyu, Wang;Guojie, Li;Yu, Zhang;Chen, Fang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.801-809
    • /
    • 2016
  • The electrically excited synchronous generator (EESG) is applied in wind turbine systems recently. In an EESG control system, electrical torque is affected by stator flux and rotor current. So the control system is more complicated than that of the permanent-magnet synchronous generator (PMSG). Thus, the higher demanding of the control system is required especially in case of wind turbine mechanical resonance. In this paper, the mechanism of rotor speed resonant phenomenon is introduced from the viewpoint of mechanics firstly, and the characteristics of an effective damping torque are illustrated through system eigenvalues analysis. Considering the variables are tightly coupled, the four-order small signal equation for torque is derived considering stator and rotor control systems with regulators, and the bode plot of the closed loop transfer function is analyzed. According to the four-order mathematical equation, the stator flux, stator current, and electrical torque responses are derived by torque reference step and ramp in MATLAB from a pure mathematical deduction, which is identical with the responses in PSCAD/EMTDC simulation results. At last, the simulation studies are carried out in PSCAD software package to verify the resonant damping control strategy used in the EESG wind turbine system.

A Study on the Efficiency of Fuel Cells for Marine Generators (선박 발전기용 연료전지 시스템의 효율에 관한 연구)

  • Lee, Jung-Hee;Kwak, Jae-Seob;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.52-57
    • /
    • 2018
  • Most current ships have adopted on-board diesel generators to produce electricity, but the overall efficiency of equipment is down to about 50% due to thermal losses from operations such as exhaust gas, jacket water cooler, scavenge air cooler, etc. Recently, fuel cells have been highlighted as a promising technology to reduce the effect on the environment and have a higher efficiency. Therefore, this paper suggested a solid oxide fuel cell (SOFC)-gas turbine (GT) using waste heat from a SOFC and SOFC-GT-steam turbine (ST) with Rankine cycle. To compare both configurations, the fuel flow rate, current density, cell voltage, electrical power, and overall efficiency were evaluated at different operating loads. The overall efficiency of both SOFC hybrid systems was higher than the conventional system.

WAVE-CURRENT INTERACTIONS IN MARINE CURRENT TURBINES

  • Barltrop, N.;Grant, A.;Varyani, K.S.;Clelland, D.;Pham, X.P.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.80-90
    • /
    • 2006
  • The influence of waves on the dynamic properties of bending moments at the root of blades of tidal stream vertical axis rotors is reported. Blade theory for wind turbine is combined with linear wave theory and used to analyse this influence. Experiments were carried out to validate the simulation and the comparison shows the usefulness of the theory in predicting the bending moments. The mathematical model is then used to study the importance of waves for the fatigue design of the blade-hub connection.

  • PDF

Reactive Current Assignment and Control for DFIG Based Wind Turbines during Grid Voltage Sag and Swell Conditions

  • Xu, Hailiang;Ma, Xiaojun;Sun, Dan
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.235-245
    • /
    • 2015
  • This paper proposes a reactive current assignment and control strategy for a doubly-fed induction generator (DFIG) based wind-turbine generation system under generic grid voltage sag or swell conditions. The system's active and reactive power constrains during grid faults are investigated with both the grid- and rotor-side convertors (GSC and RSC) maximum ampere limits considered. To meet the latest grid codes, especially the low- and high-voltage ride-through (LVRT and HVRT) requirements, an adaptive reactive current control scheme is investigated. In addition, a torque-oscillation suppression technique is designed to reduce the mechanism stress on turbine systems caused by intensive voltage variations. Simulation and experiment studies demonstrate the feasibility and effectiveness of the proposed control scheme to enhance the fault ride-through (FRT) capability of DFIG-based wind turbines during violent changes in grid voltage.

Comparison of Efficiency for Voltage Source and Current Source Based Converter in 5MW PMSG Wind Turbine Systems

  • Kang, Tahyun;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.357-358
    • /
    • 2015
  • This paper provides a comparison of power converter loss and thermal description for voltage source and current source type 5MW-class medium voltage topologies of wind turbines. Neutral-point clamped three-level converter is adopted for voltage source type topology while two-level converter is employed for current source type topology considering the popularity in the industry. In order to match the required voltage level of 4160V with the same switching device of IGCT as in voltage source converter, two active switches are connected in series for the case of current source converter. The loss analysis is confirmed through PLECS simulations. In addition, the loss factors due to di/dt and dv/dt snubber and ac input filter are presented. The comparison result shows that VSC-based wind turbine system has a higher efficiency than that of CSC under the rated operating conditions.

  • PDF

Effect of Venturi System on Acceleration of Low-speed Water Flow at the Venturi Throat Installed at the Inlet of Hydro Turbine

  • Jung, Sang-Hoon;Seo, In-Ho;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.914-920
    • /
    • 2011
  • For a hydro turbine electricity generation system in river or bay, a venturi system could be applied to accelerate flow speed at the inlet of the turbine system in a flow field. In this study, a steady flow simulation was conducted to understand the effect of venturi system on the acceleration of current speed at the inlet of a hydro turbine system. According to the continuity equation, the flow speed is inversely proportional to the cross-section area in a conduit flow; however, it would be different in an open region because the venturi system would be an obstruction in the flow region. As the throat area is 1/5 of the inlet area of the venturi, the flow velocity is accelerated up to 2.1 times of the inlet velocity. It is understood that the venturi system placed in an open flow region gives resistance to the upcoming flow and disperses the flow energy around the venturi system. The result of the study should be very important information for an optimum design of a hydro turbine electricity generation system.

Performance Design Analysis of Hybrid Systems Combining Atmospheric Pressure Molten Carbonate Fuel Cell and Gas Turbine (상압 용융탄산염 연료전지와 가스터빈을 결합한 하이브리드 시스템의 성능설계 해석)

  • Jeong, Young-Hyun;Kim, Tong-Soep
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1361-1369
    • /
    • 2003
  • Design performance of hybrid power generation systems, comprised of a gas turbine and an atmospheric pressure molten carbonate fuel cell, has been analyzed. Two different configurations were analyzed and performances were compared. A reference calculation was performed for the design condition of a system under development and simulated results agreed well with the published data. Performances were analyzed in terms of main design parameters including turbine inlet temperature, operating temperature of the fuel cell and pressure ratio. Also examined were the effects of fuel utilization factor and heat exchanger effectiveness. It was found that the relationship between the turbine inlet temperature and the fuel cell temperature should be critically examined to evaluate achievable design performance. Considering current state of the art technologies, a system with the combustor located before the turbine could achieve higher efficiency and specific power than the other system with the combustor located after the turbine.