• 제목/요약/키워드: current stimulation

검색결과 483건 처리시간 0.031초

인공와우 이식자의 역행성 청신경 복합활동전위 (Antidromic Electrically Compound Action Potential in Cochlear Implantees)

  • 허승덕;정성욱;정승현
    • 말소리와 음성과학
    • /
    • 제1권4호
    • /
    • pp.203-207
    • /
    • 2009
  • Electrically evoked compound action potentials (ECAP) have originated from the distal end of the auditory nerve. ECAP are characterized as the difference between the clearly large trough (N) and the following positive peak (P). N-wave occurs around $200-400\;{\mu}s$ after stimulus onset and P-wave at around $400-800\;{\mu}s$. Contrary to expectations, positive peaked ECAP (pp-ECAP) was dominated by a relatively large-amplitude positive following negative peak. pp-ECAP can be recorded from the sites on or near the surgically exposed nerve trunk in animal models and/or in cases of monophasic stimulation. This study will provide the causes of the appearance of pp-ECAP in cases of cochlear implant recipients using imaging studies and medical records and statistically analysis between N-P and P-N on the amplitude input-output function (amp-I/O) for the prediction of the possibilities of clinical tools. Thirteen children participated in the study and received a Cochlear CI-24RE (CA). ECAP was recorded using auto-NRT (Cochlear Ltd., Australia) at four to five weeks post surgery. pp-ECAP was measured from 36 electrodes and typical ECAP from 220 electrodes. There was no abnormality in the imaging study and operation finding in patients with typical ECAP. pp-ECAP was found at the inner ear anormaly and ossification in imaging study and gel-state inner ear fluid was observed in the operation finding. The amplitude of pp-ECAP increased depending on current intensities, but amp-I/O increase more gradually than in the case of typical ECAP (p=0.003). pp-ECAP is antidromic potential which can record from the inner ear anormaly and ossified cochlear. Amp-I/O also depends on current intensity as well typical ECAP. These results provide a useful tool for audiological evaluation for the spiral ganglion cell status to the value of pp-ECAP.

  • PDF

Risk of Encountering Dorsal Scapular and Long Thoracic Nerves during Ultrasound-guided Interscalene Brachial Plexus Block with Nerve Stimulator

  • Kim, Yeon Dong;Yu, Jae Yong;Shim, Junho;Heo, Hyun Joo;Kim, Hyungtae
    • The Korean Journal of Pain
    • /
    • 제29권3호
    • /
    • pp.179-184
    • /
    • 2016
  • Background: Recently, ultrasound has been commonly used. Ultrasound-guided interscalene brachial plexus block (IBPB) by posterior approach is more commonly used because anterior approach has been reported to have the risk of phrenic nerve injury. However, posterior approach also has the risk of causing nerve injury because there are risks of encountering dorsal scapular nerve (DSN) and long thoracic nerve (LTN). Therefore, the aim of this study was to evaluate the risk of encountering DSN and LTN during ultrasound-guided IBPB by posterior approach. Methods: A total of 70 patients who were scheduled for shoulder surgery were enrolled in this study. After deciding insertion site with ultrasound, awake ultrasound-guided IBPB with nerve stimulator by posterior approach was performed. Incidence of muscle twitches (rhomboids, levator scapulae, and serratus anterior muscles) and current intensity immediately before muscle twitches disappeared were recorded. Results: Of the total 70 cases, DSN was encountered in 44 cases (62.8%) and LTN was encountered in 15 cases (21.4%). Both nerves were encountered in 10 cases (14.3%). Neither was encountered in 21 cases (30.4%). The average current measured immediately before the disappearance of muscle twitches was 0.44 mA and 0.50 mA at DSN and LTN, respectively. Conclusions: Physicians should be cautious on the risk of injury related to the anatomical structures of nerves, including DSN and LTN, during ultrasound-guided IBPB by posterior approach. Nerve stimulator could be another option for a safer intervention. Moreover, if there is a motor response, it is recommended to select another way to secure better safety.

Chronic postsurgical pain: current evidence for prevention and management

  • Thapa, Parineeta;Euasobhon, Pramote
    • The Korean Journal of Pain
    • /
    • 제31권3호
    • /
    • pp.155-173
    • /
    • 2018
  • Chronic postsurgical pain (CPSP) is an unwanted adverse event in any operation. It leads to functional limitations and psychological trauma for patients, and leaves the operative team with feelings of failure and humiliation. Therefore, it is crucial that preventive strategies for CPSP are considered in high-risk operations. Various techniques have been implemented to reduce the risk with variable success. Identifying the risk factors for each patient and applying a timely preventive strategy may help patients avoid the distress of chronic pain. The preventive strategies include modification of the surgical technique, good pain control throughout the perioperative period, and preoperative psychological intervention focusing on the psychosocial and cognitive risk factors. Appropriate management of CPSP patients is also necessary to reduce their suffering. CPSP usually has a neuropathic pain component; therefore, the current recommendations are based on data on chronic neuropathic pain. Hence, voltage-dependent calcium channel antagonists, antidepressants, topical lidocaine and topical capsaicin are the main pharmacological treatments. Paracetamol, NSAIDs and weak opioids can be used according to symptom severity, but strong opioids should be used with great caution and are not recommended. Other drugs that may be helpful are ketamine, clonidine, and intravenous lidocaine infusion. For patients with failed pharmacological treatment, consideration should be given to pain interventions; examples include transcutaneous electrical nerve stimulation, botulinum toxin injections, pulsed radiofrequency, nerve blocks, nerve ablation, neuromodulation and surgical management. Physical therapy, cognitive behavioral therapy and lifestyle modifications are also useful for relieving the pain and distress experienced by CPSP patients.

[$Na^+-Ca^{2+}$ Exchange Curtails $Ca^{2+}$before Its Diffusion to Global $Ca^{2+}{_i}$ in the Rat Ventricular Myocyte

  • Ahn, Sung-Wan;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권2호
    • /
    • pp.95-101
    • /
    • 2005
  • In the heart, $Na^{+}-Ca^{2+}$ exchange (NCX) is the major $Ca^{2+}$ extrusion mechanism. NCX has been considered as a relaxation mechanism, as it reduces global $[Ca^{2+}]_i$ raised during activation. However, if NCX locates in the close proximity to the ryanodine receptor, then NCX would curtail $Ca^{2+}$ before its diffusion to global $Ca^{2+}_i$ This will result in a global $[Ca^{2+}]_i$ decrease especially during its ascending phase rather than descending phase. Therefore, NCX would decrease the myocardial contractility rather than inducing relaxation in the heart. This possibility was examined in this study by comparing NCX-induced extrusion of $Ca^{2+}$ after its release from SR in the presence and absence of global $Ca^{2+}_i$ transient in the isolated single rat ventricular myocytes by using patch-clamp technique in a whole-cell configuration. Global $Ca^{2+}_i$ transient was controlled by an internal dialysis with different concentrations of BAPTA added in the pipette. During stimulation with a ramp pulse from +100 mV to -100 mV for 200 ms, global $Ca^{2+}_i$ transient was suppressed only mildly, and completely at 1 mmol/L, and 10 mmol/L BAPTA, respectively. In these situations, ryanodine-sensitive inward NCX current was compared using $100{\mu}mol/L$ ryanodine, $Na^+$ depletion, 5 mmol/L $NaCl_2$ and $1{\mu}mol/L$ nifedipine. Surprisingly, the result showed that the ryanodine-sensitive inward NCX current was well preserved after 10 mmol/L BAPTA to 91 % of that obtained after 1 mmol/L BAPTA. From this result, it is concluded that most of the NCX-induced $Ca^{2+}$ extrusion occurs before the $Ca^{2+}$ diffuses to global $Ca^{2+})i$ in the rat ventricular myocyte.

결혼이민여성의 직업교육훈련 및 취업관련 시행계획의 비판적 검토 (Critical reviews of job training and employment support trial plans for immigrant women by marriage)

  • 성향숙
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6186-6195
    • /
    • 2013
  • 본 연구의 목적은 현재 우리나라 결혼이민여성의 직업교육훈련과 취업지원에 관한 시행계획을 분석하여 분석결과를 도출함으로서 차기에 수립될 관련 계획과 시행계획의 수립과정과 내용에 반영되어야할 방향성을 제시하고자 하였다. 이를 위하여 건강가정기본계획, 다문화가족정책기본계획, 경력단절 여성 등의 경제활동촉진 기본계획에 제시된 직업교육훈련 시행계획을 분석대상으로 하였다. 분석방법은 닐 길버트와 폴테릴의 정책분석 방법론을 사용하였고, 분석결과는 첫째, 내일배움카드 취업성공패키지 특화과정의 미성숙 둘째, 인적자원개발시스템의 미흡 셋째, 정부 부처간 거버넌스의 미흡을 밝히고 이러한 결과를 토대로 제언을 하였다.

신재생 전원 계통 접속에 따른 전력계통 영향 평가에 관한 연구 (A Study on the Evaluation of the Impact of Power System according to the Connection of Renewable Energy)

  • 박성준;조윤성;허진;박상호;윤기갑
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.733-737
    • /
    • 2018
  • 본 논문에서는 신재생 발전원의 추가에 따라 계통에 미치는 영향에 관하여 서술하였다. 계통의 안정도 검토를 위해, PSS/E S/W을 이용하여 계통 해석을 수행하였다. 정상상태 조류 계산을 통한 선로 과부하 검토 및 고장 용량 해석을 통한 고장 전류초과여부 및 상정고장 해석을 통한 선로 과부하 여부를 확인하였다. 다이나믹 시뮬레이션을 통해 계통의 동적안정도를 확인하였다. 신재생 발전기 추가에 따른 계통 해석은 전력계통 신뢰도 및 전기품질 유지기준에 따라 해석을 수행하였다.

급성 및 아급성 천막상 허혈성 뇌졸중에서 발생하는 말초신경 흥분성 변화 (Altered Peripheral Nerve Excitability Properties in Acute and Subacute Supratentorial Ischemic Stroke)

  • 서정화;지기환;정은주;김상진;김응규;팽성화;배종석
    • Annals of Clinical Neurophysiology
    • /
    • 제14권2호
    • /
    • pp.64-71
    • /
    • 2012
  • Background: It is generally accepted that upper motor neuron (UMN) lesion can alter lower motor neuron (LMN) function by the plasticity of neural circuit. However there have been only few researches regarding the axonal excitability of LMN after UMN injury especially during the acute stage. The aim of this study was to investigate the nerve excitability properties of the LMNs following an acute to subacute supratentorial corticospinal tract lesion. Methods: An automated nerve excitability test (NET) using the threshold tracking technique was utilized to measure multiple excitability indices in median motor axons of 15 stroke patients and 20 controls. Testing of both paretic and non-paretic side was repeated twice, during the acute stage and subacute stage. The protocols calculated the strength-duration time constant from the duration-charge curve, parameters of threshold electrotonus (TE), the current-threshold relationship from sequential sub-threshold current, and the recovery cycle from sequential supra-threshold stimulation. Results: On the paretic side, compared with the control group, significant decline of superexcitablity and increase in the relative refractory period were observed during the subacute stage of stroke. Additionally, despite the absence of statistical significance, a mildly collapsing in ('fanning in') of the TE was found. Conclusions: Our results suggest that supratentorial brain lesions can affect peripheral axonal excitability even during the early stage. The NET pattern probably suggests background membrane depolarization of LMNs. These features could be associated with trans-synaptic regulation of UMNs to LMNs as one of the "neural plasticity" mechanisms in acute brain injury.

Open Channel Block of Kv3.1 Currents by Genistein, a Tyrosine Kinase Inhibitor

  • Choi, Bok-Hee;Park, Ji-Hyun;Hahn, Sang-June
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권2호
    • /
    • pp.71-77
    • /
    • 2006
  • The goal of this study was to analyze the effects of genistein, a widely used tyrosine kinase inhibitor, on cloned Shaw-type $K^+$ currents, Kv3.1 which were stably expressed in Chinese hamster ovary (CHO) cells, using the whole-cell configuration of patch-clamp techniques. In whole-cell recordings, genistein at external concentrations from 10 to $100{\mu}M$ accelerated the rate of inactivation of Kv3.1 currents, thereby concentration-dependently reducing the current at the end of depolarizing pulse with an $IC_{50}$ value of $15.71{\pm}0.67{\mu}M$ and a Hill coefficient of $3.28{\pm}0.35$ (n=5). The time constant of activation at a 300 ms depolarizing test pulses from -80 mV to +40 mV was $1.01{\pm}0.04$ ms and $0.90{\pm}0.05$ ms (n=9) under control conditions and in the presence of $20{\mu}M$ genistein, respectively, indicating that the activation kinetics was not significantly modified by genistein. Genistein $(20{\mu}M)$ slowed the deactivation of the tail current elicited upon repolarization to -40 mV, thus inducing a crossover phenomenon. These results suggest that drug unbinding is required before Kv3.1 channels can close. Genistein-induced block was voltage-dependent, increasing in the voltage range $(-20\'mV{\sim}0\'mV)$ for channel opening, suggesting an open channel interaction. Genistein $(20{\mu}M)$ produced use-dependent block of Kv3.1 at a stimulation frequency of 1 Hz. The voltage dependence of steady-state inactivation of Kv3.1 was not changed by $20{\mu}M$ genistein. Our results indicate that genistein blocks directly Kv3.1 currents in concentration-, voltage-, time-dependent manners and the action of genistein on Kv3.1 is independent of tyrosine kinase inhibition.

Cerebral current-source distribution associated with pain improvement by non-invasive painless signaling therapy in patients with failed back surgery syndrome

  • Lee, Chang Han;Kim, Hyeong Seop;Kim, Young-Soo;Jung, Seokwon;Yoon, Chul Ho;Kwon, Oh-Young
    • The Korean Journal of Pain
    • /
    • 제34권4호
    • /
    • pp.437-446
    • /
    • 2021
  • Background: Non-invasive painless signaling therapy (NPST) is an electro-cutaneous treatment that converts endogenous pain information into synthetic non-pain information. This study explored whether pain improvement by NPST in failed back surgery syndrome (FBSS) patients is related to cerebral modulation. Methods: Electroencephalography (EEG) analysis was performed in 11 patients with FBSS. Subjects received daily NPST for 5 days. Before the first treatment, patients completed the Brief Pain Inventory (BPI) and Beck Depression Inventory and underwent baseline EEG. After the final treatment, they responded again to the BPI, reported the percent pain improvement (PPI), and then underwent post-treatment EEG. If the PPI grade was zero, they were assigned to the ineffective group, while all others were assigned to the effective group. We used standardized low-resolution brain electromagnetic tomography (sLORETA) to explore the EEG current-source distribution (CSD) associated with pain improvement by NPST. Results: The 11 participants had a median age of 67.0 years, and 63.6% were female. The sLORETA images revealed a beta-2 CSD increment in 12 voxels of the right anterior cingulate gyrus (ACG) and the right medial frontal area. The point of maximal CSD changes was in the right ACG. The alpha band CSD increased in 2 voxels of the left transverse gyrus. Conclusions: Pain improvement by NPST in FBSS patients was associated with increased cerebral activity, mainly in the right ACG. The change in afferent information induced by NPST seems to be associated with cerebral pain perception.

Nootkatol prevents ultraviolet radiation-induced photoaging via ORAI1 and TRPV1 inhibition in melanocytes and keratinocytes

  • Woo, Joo Han;Nam, Da Yeong;Kim, Hyun Jong;Hong, Phan Thi Lam;Kim, Woo Kyung;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권1호
    • /
    • pp.87-94
    • /
    • 2021
  • Skin photoaging occurs due to chronic exposure to solar ultraviolet radiation (UV), the main factor contributing to extrinsic skin aging. Clinical signs of photoaging include the formation of deep, coarse skin wrinkles and hyperpigmentation. Although melanogenesis and skin wrinkling occur in different skin cells and have different underlying mechanisms, their initiation involves intracellular calcium signaling via calcium ion channels. The ORAI1 channel initiates melanogenesis in melanocytes, and the TRPV1 channel initiates MMP-1 production in keratinocytes in response to UV stimulation. We aimed to develop a drug that may simultaneously inhibit ORAI1 and TRPV1 activity to help prevent photoaging. We synthesized nootkatol, a chemical derivative of valencene. TRPV1 and ORAI1 activities were measured using the whole-cell patch-clamp technique. Intracellular calcium concentration [Ca2+]i was measured using calcium-sensitive fluorescent dye (Fura-2 AM). UV-induced melanin formation and MMP-1 production were quantified in B16F10 melanoma cells and HaCaT cells, respectively. Our results indicate that nootkatol (90 μM) reduced TRPV1 current by 94% ± 2% at -60 mV and ORAI1 current by 97% ± 1% at -120 mV. Intracellular calcium signaling was significantly inhibited by nootkatol in response to ORAI1 activation in human primary melanocytes (51.6% ± 0.98% at 100 μM). Additionally, UV-induced melanin synthesis was reduced by 76.38% ± 5.90% in B16F10 melanoma cells, and UV-induced MMP-1 production was reduced by 59.33% ± 1.49% in HaCaT cells. In conclusion, nootkatol inhibits both TRPV1 and ORAI1 to prevent photoaging, and targeting ion channels may be a promising strategy for preventing photoaging.