• Title/Summary/Keyword: current stimulation

Search Result 481, Processing Time 0.025 seconds

Effect of Transcranial Direct Current Stimulation on Movement Variability in Repetitive - Simple Tapping Task

  • Kwon, Yong Hyun;Cho, Jeong Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Purpose: Accuracy and variability of movement in daily life require synchronization of muscular activities through a specific chronological order of motor performance, which is controlled by higher neural substrates and/or lower motor centers. We attempted to investigate whether transcranial direct current stimulation (tDCS) over primary sensorimotor areas (SM1) could influence movement variability in healthy subjects, using a tapping task. Methods: Twenty six right-handed healthy subjects with no neurological or psychiatric disorders participated in this study. They were randomly and equally assigned to the real tDCS group or sham control group. Direct current with intensity of 1 mA was delivered over their right SM1 for 15 minutes. For estimation of movement variability before and after tDCS, tapping task was measured, and variability was calculated as standard deviation of the inter-tap interval (SD-ITI). Results: At the baseline test, there was no significant difference in SD-ITI between the two groups. In two-way ANOVA with repeated measurement no significant differences were found in a large main effect of group and interaction effect between two main factors (i.e., group factor and time factor (pre-post test)). However, significant findings were observed in a large main effect of the pre-post test. Conclusion: Our findings showed that the anodal tDCS over SM1 for 15 minutes with intensity of 1 mA could enhance consistency of motor execution in a repetitive-simple tapping task. We suggest that tDCS has potential as an adjuvant brain facilitator for improving rhythm and consistency of movement in healthy individuals.

Analysis of Meridian Response by Sound Stimulus in Body (음향 자극에 의한 인체 경락의 반응분석)

  • Kim, Yong-Chin;Jeong, Dong-Myong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.3
    • /
    • pp.47-54
    • /
    • 2001
  • This study is to analyze the impedance response in human body by acoustic stimulation on acupoints and contrast parte; for objectification of the meridian substance. It is to verify meridian pathway and channel theory or bio-energy in body. This paper proposes to make an hypothesis about the underground water theory. The meridian has not tube or pipe line type channel but bio-energy flow along the channel similar to flowing pattern of underground water in body. It was analyzed the current characteristic or impedance response after acoustic stimulation by sound wave of 5 specific tones. The response characteristics of current stimulation are measured by the average current magnitude and variation ratio or meridian. The current variation ratio or Live Meridian(gung) 33.2%, Heart Meridian(sang) 30.7% Kidney Meridian (gak) 33.1%, Spleen Meridian(chi) 33.9%, Lung Meridian (wo) 30.7% are to be compared to contrast parts (non-acupoint and meridian). In experimental results, meridian is discrimination to non-meridian, and 5 vital meridians have a reciprocal relationship with sound wave of 5 specific tones.

  • PDF

Development and Evaluation of a Portable Micro-Current Stimulator for Acute Lateral Epicondylitis (급성 외측 상과염 치료를 위한 휴대용 미세전류자극기 개발 및 효과 검증)

  • Kwon, Hyeok Chan;Lee, Hyun Ju;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.68-74
    • /
    • 2019
  • Lateral epicondylitis is caused by repeated use of the wrist, which causes inflammation and pain in the wrist extensor and tendon of the humerus. Delayed onset muscle soreness (DOMS) caused by repetitive resistance exercise affects the tendons connected in series with the muscle, leading to lateral epicondylitis. Although micro-current stimulation has been suggested as a possible treatment for tendinitis, there are insufficient studies on specific variables such as frequency. In this study, 15 healthy adult males and females developed DOMS in the wrist extensor and tendon in the humerus. The experimental group consisted of a low frequency group applying 20 Hz and a high frequency group applying 100 Hz according to the micro-current frequency. Each subject underwent an experiment for 5 days after DOMS, and the recovery rates were compared by measuring AROM, GPT, MST, PPT, and VAS. As a result, the 20 Hz group showed significant changes in AROM, MST, and VAS compared to the control group on the 4th day, and the recovery rate was also higher than that of the 100 Hz group. On the 5th day, recovery rate of 100 Hz group was higher than 20 Hz in AROM and PPT, and MST showed higher recovery rate than 20 Hz group, but there was no significant difference. These results indicate that microcurrent stimulation is effective for the treatment of delayed myalgia and tendon inflammation and that the 100 Hz group has faster recovery than the 20 Hz group.

The Micro-Current Stimulation Inhibits Adipogenesis by Activating Wnt/β-Catenin Signaling (Wnt/β-catenin 신호 활성화를 통한 미세전류 자극의 지방생성 억제 효과)

  • Hwang, Donghyun;Lee, Hana;Lee, Minjoo;Cho, Seungkwan;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.235-246
    • /
    • 2020
  • This study aimed to evaluate the inhibitory effect of micro-current stimulation(MCS) on adipogenesis regarding with Wnt/β-catenin pathway using the ob/ob mouse and 3T3-L1 cell line. 6-week old ob/ob male mice were equally assigned to four groups: obese group(ob), obese with MCS groups(50 μA, 200 μA, and 400 μA). 6-week old C57BL/6J male mice were assigned to the control group(CON). We analyzed abdominal adipose tissue volume by using in vivo micro-CT and measured the body weight, feed intake, liver weight and triglycerides in serum. All the MCS groups showed that significantly reduced body weight and triglycerides in serum. In the case of liver weight and abdominal adipose tissue volume, the inhibitory effect of adipogenesis was shown in the 200 μA and 400 μA groups. To elucidate the anti-obesity effect of MCS, β-catenin, C/EBPα and FAS protein expressions were analyzed by western blotting. β-catenin expression was upregulated, C/EBPα and FAS expression were down-regulated in the relatively high-intensity groups(200 μA and 400 μA). Thus, the 200 μA and 400 μA for the intensity of MCS were chosen for cell experiments. In the 3T3-L1 cell line, Wnt/β-catenin pathway including Wnt10b, Wnt3a, β-catenin and Cyclin D1 was activated in all MCS groups. Accordingly, the expression level of C/EBPα was decreased during the differentiation and lipid droplet was significantly reduced in Oil red O staining results. These results suggest that the Wnt/β-catenin signaling might be activated by MCS with current intensities between 200-400 μA and it may lead to anti-obesity effects.

Effects of Micro-current Stimulation on lipid metabolism in Oleic Acid-Induced Non-Alcoholic Fatty Liver disease in FL83B cells (올레산으로 유도된 비알코올성 지방간 세포 모델에서의 미세전류 자극의 지질 대사 조절 효능 평가)

  • Lee, Hana;Lee, Minjoo;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Non-alcoholic fatty liver disease(NAFLD) is excessive hepatic lipid accumulation mainly caused by obesity. This study aimed to evaluate whether micro-current stimulation(MCS) could modulate lipid metabolism regarding the Sirt1/AMPK pathway, fatty acid β-oxidation pathway, and lipolysis and lipogenesis-related factors in FL83B cells. For the NAFLD cell model, FL83B cells were treated with oleic acid for lipid accumulation. MCS were stimulated for 1 hr and used frequency 10 Hz, duty cycle 50%, and biphasic rectangular current pulse. The intensity of MCS was divided into 50, 100, 200, and 400 ㎂. Through the results of Oil red O staining, it was confirmed that MCSs with the intensity of 200 ㎂ and 400 ㎂ significantly reduced the degree of lipid droplet formation. Thus, these MCS intensities were applied to western blot analysis. Western blot analysis was performed to analyze the effects of MCS on lipid metabolism. MCS with the intensity of 400 ㎂ showed that significantly activated the Sirt1/AMPK pathway, a key pathway for regulating lipid metabolism in hepatocytes, and fatty acid β-oxidation-related transcription factors. Moreover, it activated the lipolysis pathway and suppressed lipogenesis-related transcription factors such as SREBP-1c, FAS, and PPARγ. In the case of MCS with the intensity of 200 ㎂, only PGC1α and SREBP-1c showed significant differences compared to cells treated only with oleic acid. Taken together, these results suggested that MCS with the intensity of 400 ㎂ could alleviate hepatic lipid accumulation by modulating lipid metabolism in hepatocytes.

The Effect of Transcranial Direct Current Stimulation on Pain and Balance of Total Knee Arthroplasty Patients (경두개직류전류자극이 무릎관절 전치환술 환자의 통증 및 균형 능력에 미치는 영향)

  • Jae-hong, Lee;Dong-ki, Min;Sang-jae, Lee
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.3
    • /
    • pp.79-87
    • /
    • 2022
  • Background: The purpose of this study was to examine the effect of transcranial direct current stimulation (tDCS) on the pain and balance of patients who receive total knee arthroplasty (TKA). Methods: This study subjects were 24 patients in Hospital T, located in Daegu, South Korea who received TKA after being diagnosed with degenerative arthritis. The subjects were randomly divided into and experimental group and a control group, with each group including 12 patients. Both group received superfical thermal therapy, interferential current therapy (ICT), and continue passive motion (CPM), which are conventional knee therapy on the knee joint. The experimental group received the tDCS treatment three times a week for three weeks, from October 1st to October 20th. The visual analogue scale and Wii Balance Board system were used to measure the pain and balancing ability, respectively, of both groups. In the statistical result analysis, to compare about pre and post test difference in each groups was accomplished. Statistical analysis of independent t-test and paired t-test were conducted using SPSS version 23.0. Results: After three weeks of intervation, there were significantly difference in balance ability in pre and post test in the tDCS group. VAS decreased significantly in both groups(p<.05), There was a significantly difference in pain, balance ability in the tDCS group compared to the sham group. Conclusion: These results indicate that applying tDCS together with conventional knee joint therapy for TKA patients is effective in promoting the patients' recovery.

Improvement of PENS on Peripheral Nerve Conduction Function in STZ-Induced Diabetic Rats (당뇨유발백서에서 피하신경전기자극의 말초신경기능 개선효과)

  • Kim, Yang-Ho;Chang, Mee-Kyung;Shin, Min-Chul
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.4
    • /
    • pp.19-26
    • /
    • 2006
  • Purpose: This study aimed the effects of percutaneous electric nerve stimulation (PENS) applied to different parts of the streptozotocin-induced diabetic rats on the change of glucose and nerve. Methods: rats (ten weeks old) were selected as the subjects; the normal group was five rats, and the diabetes induction group II, III and IV were five rats, respectively, which were randomly sampled from the twenty-five streptozotocin-administered rats with more than $240\;d{\ell}/m{\ell}$ of blood sugar. For PENS, electric current with 2 Hz of stimulation frequency and $200\;{\mu}s$ of pulse duration was applied to the subjects for fifteen minutes a day, six days a week, for three weeks. Calculation of glucose and weight, and nerve conduction test were conducted forty-eight hours and three weeks after streptozotocin administration, respectively. Results: As for change of glucose and weight, the group III with stimulation to the acupoints and the group IV with stimulation to non-acupoints showed significant differences from the control group II (p<0.05). As for MNCV (motor nerve conduction velocity), the group III with stimulation to the acupoints showed significant differences from the group IV with stimulation to non-acupoints and the control group II (p<0.05). Conclusion: PENS had the effects of inhibiting increase of glucose, change of weight and decrease of nerve conductive function between the distal and proximal ends of the peripheral nerve in the STZ-induced diabetic rats.

  • PDF

Near-Infrared Laser Stimulation of the Auditory Nerve in Guinea Pigs

  • Guan, Tian;Wang, Jian;Yang, Muqun;Zhu, Kai;Wang, Yong;Nie, Guohui
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.269-275
    • /
    • 2016
  • This study has investigated the feasibility of 980-nm low-energy pulsed near-infrared laser stimulation to evoke auditory responses, as well as the effects of radiant exposure and pulse duration on auditory responses. In the experiments, a hole was drilled in the basal turn of the cochlea in guinea pigs. An optical fiber with a 980-nm pulsed infrared laser was inserted into the hole, orientating the spiral ganglion cells in the cochlea. To model deafness, the tympanic membrane was mechanically damaged. Acoustically evoked compound action potentials (ACAPs) were recorded before and after deafness, and optically evoked compound action potentials (OCAPs) were recorded after deafness. Similar spatial selectivity between optical and acoustical stimulation was found. In addition, OCAP amplitudes increased with radiant exposure, indicating a photothermal mechanism induced by optical stimulation. Furthermore, at a fixed radiant exposure, OCAP amplitudes decreased as pulse duration increased, suggesting that optical stimulation might be governed by the time duration over which the energy is delivered. Thus, the current experiments have demonstrated that a 980-nm pulsed near-infrared laser with low energy can evoke auditory neural responses similar to those evoked by acoustical stimulation. This approach could be used to develop optical cochlear implants.

Turning on the Left Side Electrode Changed Depressive State to Manic State in a Parkinson's Disease Patient Who Received Bilateral Subthalamic Nucleus Deep Brain Stimulation: A Case Report

  • Kinoshita, Makoto;Nakataki, Masahito;Morigaki, Ryoma;Sumitani, Satsuki;Goto, Satoshi;Kaji, Ryuji;Ohmori, Tetsuro
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.16 no.4
    • /
    • pp.494-496
    • /
    • 2018
  • No previous reports have described a case in which deep brain stimulation elicited an acute mood swing from a depressive to manic state simply by switching one side of the bilateral deep brain stimulation electrode on and off. The patient was a 68-year-old woman with a 10-year history of Parkinson's disease. She underwent bilateral subthalamic deep brain stimulation surgery. After undergoing surgery, the patient exhibited hyperthymia. She was scheduled for admission. On the first day of admission, it was clear that resting tremors in the right limbs had relapsed and her hyperthymia had reverted to depression. It was discovered that the left-side electrode of the deep brain stimulation device was found to be accidentally turned off. As soon as the electrode was turned on, motor impairment improved and her mood switched from depression to mania. The authors speculate that the lateral balance of stimulation plays an important role in mood regulation. The current report provides an intriguing insight into possible mechanisms of mood swing in mood disorders.

The Effect of Transcranial Direct Current Stimulation over the Primary Somatosensory Cortex in Patients with Chronic Stroke on Somatosensory and Upper Limb Function for Improving Life Care (만성 뇌졸중 환자를 대상으로 한 일차 체성 감각 피질을 자극한 경두개 직류 전류 자극이 라이프 케어 증진을 위한 체성감각과 상지기능에 미치는 영향)

  • Kim, Sun-Ho
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.6
    • /
    • pp.269-277
    • /
    • 2020
  • The purpose of this study is to investigate the recovery of sensation and the restoration of upper limb function according to transcranial direct current stimulation over the primary somatosensory cortex in patients with chronic stroke with sensory deficit. 20 patients with chronic stroke divided into 10 experimental groups and 10 control groups. Patients received transcranial direct current stimulations over the primary somatosensory cortex on the side of the stroke lesion, and The control group applied sham tDCS to the same location. Intervention was conducted 5 times a week, 20 minutes per session for a total of 2 weeks. Assessment was performed using the Erasmus MC modifications to the Nottingham Sensory Assessment(EmNSA), Semmes-Weinstein monofilament examination(SWME) for somatosensory, and Fugle-Meyer Assessment(FMA), Motor Activity Log(MAL), and accelerometer for upper extremity function. Assessment was conducted before and after the intervention. As a result of the study, the experimental group showed a significant improvement in the overall tactile sense, proprioception, cortical sense, and perception sensitivity than the control group, and showed a statistically significant difference in the usage amount of the upper limb. Based on the results of this study, it is thought that the possibility of effective clinical application of transcranial direct current stimulation for recovery of somatosensory and upper extremity function is thought to be increased.