• 제목/요약/키워드: current stabilizer

검색결과 85건 처리시간 0.022초

푸시업플러스 시 근전도 바이오피드백을 이용한 전거근의 선택적 강화 (Selective Activation of Serratus Anterior Using Electromyography Biofeedback During Push-Up Plus)

  • 전용진;정성대;김시현;신헌석
    • 한국전문물리치료학회지
    • /
    • 제18권1호
    • /
    • pp.1-8
    • /
    • 2011
  • Push-up plus has been advocated for increasing the activity of the serratus anterior muscle, the most critical scapular stabilizer. However, no previous study has reported the possibility of compensatory motion on the part of the pectoralis major, which could substitute for the action of the serratus anterior during push-up plus. The aim of the current study was to investigate the immediate effect of electromyography (EMG) biofeedback of the pectoralis major muscle on the pectoralis major, upper trapezius, and serratus anterior muscles during push-up plus. Fourteen healthy young subjects voluntarily participated in this study; each subject performed push-up plus from the quadruped position, in two conditions (i.e., with or without visual and auditory biofeedback). Surface EMG was used to measure pectoralis major, serratus anterior, and upper trapezius activity. A paired t-test was used to determine any statistically significant difference between the two conditions. Additionally, effect size was calculated to quantify the magnitude of EMG biofeedback in each muscle. Visual and auditory feedback reduced pectoralis major muscle activity significantly (p=.000) and increased the serratus anterior muscle activity significantly (p=.002), but did not induce a significant difference in upper trapezius muscle activity (p=.881). Thus, it is concluded that the visual and auditory feedback of pectoralis major muscle activity can be used to facilitate serratus anterior muscle activity during push-up plus.

위상상관과 칼만 필터 움직임 예측을 이용한 동영상 안정화 (Video Stabilization using Phase Correlation and Kalman Filter-Based Motion Prediction)

  • 한학용;정효원;강봉순;허강인
    • 융합신호처리학회논문지
    • /
    • 제10권2호
    • /
    • pp.106-111
    • /
    • 2009
  • 실시간 영상 안정화 기술은 손떨림에 의한 휴대용 카메라 혹은 외부적 조건에 의한 고정 카메라의 흔들림 보상에 이용된다. 본 논문은 비교적 큰 외부적 요인으로 인하여 발생하는 동영상의 흔들림에 대한 대책에 관한 것이다. 동영상 안정화 파라메터로 이용되는 기준 프레임에 대한 현재 프레임의 변위를 얻기 위하여 DFT에 기반한 위상 상관법을 이용한다. 그리고 위상 상관지도에서의 효율적이고 안정적인 탐색을 위하여 칼만 필터를 이용하여 탐색 범위를 추정하는 방법과 안정적인 성능과 실시간 처리에 필요한 조건을 실험적으로 찾아내고 그 조건을 제시한다. 중심 지점에 대한 평균밝기의 표준편차 값을 동영상 안정화의 성능 평가 척도로 제안하고 가상 흔들림 동영상과 실제 흔들림 동영상에 대하여 성능을 서로 비교하였다.

  • PDF

Si and Mg doped Hydroxyapatite Film Formation by Plasma Electrolytic Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.195-195
    • /
    • 2016
  • Titanium and its alloys are widely used as implants in orthopedics, dentistry and cardiology due to their outstanding properties, such as high strength, high level of hemocompatibility and enhanced biocompatibility. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The aim of this study is to research Si and Mg doped hydroxyapatite film formation by plasma electrolytic oxidation. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. A Si and Mg coating was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

팥 종피에서의 색소 추출과 저장 안정성 (Colorant Extracting and Its Storage Stability from Red bean and Black bean Seed Coat)

  • 배도규;정양숙
    • Current Research on Agriculture and Life Sciences
    • /
    • 제28권
    • /
    • pp.31-38
    • /
    • 2010
  • 본 연구에서는 붉은팥과 검정팥 종피에 함유된 천연색소에 대한 연구의 일환으로, 추출방법에 따른 색소 추출 효율과 저장안정제 첨가에 따른 저장 안정성과 특성을 검토하여 다음과 같은 결과를 얻었다. 1. 붉은팥 종피의 용액 추출 시 $50^{\circ}C$까지는 온도가 높을수록, 시간이 경과될수록 색소 추출 효율이 높게 나타났으나, $70^{\circ}C$에서는 시간이 경과될수록 색소 추출효율이 감소하는 경향을 보이며 pH 조건에서는 pH 5가 가장 효율적이었다. 2. 검정팥 종피의 용액 추출 시 온도가 높을수록, 시간이 경과될수록 색소 추출 효율이 높게 나타났으며, pH 조건에서는 pH 5가 가장 효율적이었다. 3. 착액 추출 시, 붉은팥의 경우 pH 5의 전처리가 증류수보다 색소 추출량이 많았으며, 검정팥의 경우 단시간 전처리에서는 증류수가 pH 5에서 보다 색소 추출량이 많았지만, 4시간 이상의 전처리에서는 오히려 pH 5에서 많게 나타났다. 4. 저장 안정제로 Methionine을 첨가한 결과에서는 붉은팥 종피의 경우에는 첨가량이 많을수록, 검정팥 종피의 경우에는 10mmol첨가가 20mmol 첨가보다 안정 효과가 큰 것으로 나타났다.

  • PDF