• Title/Summary/Keyword: current sensorless

Search Result 384, Processing Time 0.027 seconds

Sensorless speed control of a Switched Reluctance Motor using Fuzzy position estimation algorithm (퍼지회전자 위치평가 알고리즘을 이용한 SRM센서리스 속도제어에 관한 연구)

  • 최재동;김갑동;안재황;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.343-351
    • /
    • 2000
  • This paper introduces a new rotor position estimation algorithm for the Switched Reluctance Motor, based on the magnetizing curves only at aligned and unaligned rotor positions. The flux linkage is calculated by measured data from phase voltage and phase current, and calculated data are used as the input of magnetizing profiles for rotor position detection. The fuzzy flux observer using novel knowledge-based fuzzy controller are presented to achieve sensorless control of the SRM. The method for selecting optimal angle is proposed for the rotor position detection. The robustness of the proposed algorithm is proved through the comparison of the simulation and experimental results.

  • PDF

Simple Initial Rotor Position Estimation for Stable Startup of IPMSM Sensorless Control (IPMSM 센서리스 제어의 안정된 기동을 위한 간단한 초기회전자 추정기법)

  • Kim, Gun-Myoung;Park, Byoung-Gun;Goo, Bon-Gwan;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.602-609
    • /
    • 2011
  • This paper proposes a simple initial rotor position estimation method to obtain a stable startup performance for back EMF-based sensorless control. The proposed estimation method is achieved at standstill by using the current response to difference between each of the stator winding inductance. This initial rotor position estimation method can be easily implemented to control algorithm without any other external devices. The proposed algorithm is also not affected by motor parameter. The validity of the proposed method is demonstrated by experimental result.

Stator Flux Oriented Sensorless Vector Control with Phase/Gain Compensated LPF for Induction Motor (유도전동기를 위한 위상/이득 보상 LPF를 가지는 고정자 자속 기준 센서리스 벡터 제어)

  • Park Seung-Yub;Kim Sam-Young
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.4
    • /
    • pp.201-207
    • /
    • 2005
  • This paper has investigated the sensorless vector control method of induction motor based on the stator flux oriented voltage equation and the digital low pass filter (LPF) with compensator of phase/gain. The Proposed vector control method is easy to decide the stator reference voltages and control of motor, since it is based on stator flux vector But this method has sensitive structure to excessive sensor noise and PWM pulsating components of stator currents because the measured stator currents are directly used to compensate the internal resistive voltage drop at the determination of stator reference voltages. To eliminate the noise sensitive of proposed vector drive, this paper propose the digital LPF with compensator of phase/gain base on orthogonal property of stator current vector in stationary $\alpha$, $\beta$ reference frame. The proposed methods have been simulated and implemented on a sensorless vector drive for 750W three-phase induction motor. The simulation and experimental results demonstrate effectiveness of the proposed methods.

A Design of Programmable Low Pass Filter to Reduce the ZCP Estimation Error at High Speed BLDC Sensorless Drive (BLDC 고속 센서리스 구동의 ZCP 추정 오차 저감을 위한 Programmable Low Pass Filter 설계)

  • Seo, Eunjeong;Lee, Kangseok;Lee, Wootaik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • This paper presents a design method of programmable low pass filter(PLPF) which reduce an estimation error of a zero crossing point(ZCP) for a high speed brushless DC(BLDC) motor drive. BLDC motor sensorless drive is possible by estimation of ZCP. The ZCP estimated by detecting a change of back-EMF polarity has the estimation error because noises exist on the measured back-EMF. Therefore a calculated commutation timing using the ZCP is inaccurate. And the inexact commutation timing leads to ripples of 3-phase current and degradation of drive performance. This paper proposes the design method of the PLPF to overcome these problems. First, a speed calculated a inaccurate period of the ZCP is analyzed in the frequency domain. Then, the PLPF that has varying cut-off frequency according to change of the speed is designed on the frequency analysis result. The proposed method is verified by the experiment.

Eliminating Method of Estimated Magnetic Flux Offset in Flux based Sensorless Control Algorithm of Surface Mounted PM Synchronous Motor (표면부착형 영구자석 동기전동기의 자속기반 센서리스 제어 알고리즘의 추정자속 옵셋 제거 기법)

  • Kim, Hack-Jun;Cho, Kwan-Yuhl;Kim, Hag-Wone;Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.216-222
    • /
    • 2017
  • The rotor position of a PM synchronous motor is commonly estimated from the mathematical model for the sensorless control without rotor position sensors. For the magnet flux-based rotor position estimator in the stationary reference frame, the magnet flux estimator for estimating rotor position and speed includes the integrator. The integrator in the magnet flux estimator may accumulate the offset of the current sensors and the voltage drift. This continuous accumulation of the offset may cause the drift and overflow in the integrator, such that the estimated rotor position and speed may fail to track the real rotor position and speed. In this paper, the magnet flux estimator without integrator is proposed to avoid overflow in the integrator. The proposed rotor position and speed estimator based on magnet flux estimator are verified through simulation and experiment.

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 강성주;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.90-97
    • /
    • 2004
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as speed detectors. but they increase cost and size of the motor and restrict the industrial drive applications. So in these days. many Papers have reported on the sensorless operation or DC motor(3)-(5). This paper Presents a new sensorless strategy using neural networks(6)-(8). Neural network structure has three layers which are input layer. hidden layer and output layer. The optimal neural network structure was tracked down by trial and error and it was found that 4-16-1 neural network has given suitable results for the instantaneous rotor speed. Also. learning method is very important in neural network. Supervised learning methods(8) are typically used to train the neural network for learning the input/output pattern presented. The back-propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Maximum Current Estimation Method for the Backup of Current Sensor Faults

  • Kim, Jae-Yeon;Park, Si-Hyun;Suh, Young-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.201-206
    • /
    • 2020
  • This paper presents a new method for controlling the current of lighting LEDs without current sensors. This method can be used as backup against LED current sensor faults. LED lighting requires a circuit with a constant current in order to maintain the same brightness when the ambient temperature changes. Therefore, we propose a new current estimation method to provide backup in case of current sensor faults based on the calculation of the inductor current. In the fabricated circuit, the average current changes from 144.03 mA to 155.97 mA when the ambient temperature changes from 0℃ to 60℃. The application of this study can enable the fabrication of a driving IC for LEDs in the form of a single chip without sensing resistors. This is expected to reduce the complexity of the peripheral circuit and enable precise feedback control.

High Performance Adjustable-Speed Induction Motor Drive System Incorporating Sensorless Vector Controlled PWM Inverter with Auto-Tuning Machine-Operated Parameter Estimation Schemes

  • Soshin, Koji;Okamura, Yukiniko;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.99-114
    • /
    • 2003
  • This paper presents a feasible development on a highly accurate quick response adjustable speed drive implementation fur general purpose induction motor which operates on the basis of sensorless slip frequency type vector controlled sine-wave PWM inverter with an automatic tuning machine parameter estimation schemes. In the first place, the sensorless vector control theory on the three-phase voltage source-fed inverter induction motor drive system is developed in slip frequency based vector control principle. In particular, the essential procedure and considerations to measure and estimate the exact stator and rotor circuit parameters of general purpose induction motor are discussed under its operating conditions. The speed regulation characteristics of induction motor operated by the three-phase voltage-fed type current controlled PWM inverter using IGBT's is illustrated and evaluated fur machine parameter variations under the actual conditions of low frequency and high frequency operations for the load torque. In the second place, the variable speed induction motor drive system, employing sensorless vector control scheme which is based on three -phase high frequency carrier PWM inverter with automatic toning estimation schemes of the temperature -dependent and -independent machine circuit parameters, is practically implemented using DSP-based controller. Finally, the dynamic speed response performances for largely changed load torque disturbances as well as steady state speed vs. torque characteristics of this induction motor control implementation are illustrated and discussed from an experimental point of view.

Sensorless Control of High-speed Type PMSM in Wide Speed Range using an Iterative Adaptive Flux Observer (반복 적응자속관측기를 이용한 초고속 영구자석형 동기전동기의 전영역 센서리스 제어)

  • Kim, Jong-Moo;Choi, Jeong-Won;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.168-175
    • /
    • 2009
  • This paper proposes an enhanced algorithm for sensorless control of 45,000rpm/22kw type Permanent Magnetic Synchronous Motor (PMSM) with air-foil bearing. The proposed algorithm is based on iterative adaptive flux observer for sensorless control of the motor in wide speed range by on-line estimating angle and velocity of rotor. Simulation error between actual and estimated angle of rotor is analyzed to enhance characteristics of frequency response of conventional adaptive flux observer, which results in stable response in wide range of speed. Using the iteration number for stable phase-delay characteristics, the observer enhances the dynamic characteristics of the observer within current control period. The experiment results show the reliable performance of the proposed algorithm through starting to high speed operating range.

An Analysis of Position Detection Error of Sensorless Controller and Modeling of Drive System for Interior Permanent Magnet BLDC Motors (영구자석 매입형 BLDC 전동기 센서리스 제어시스템의 위치검지 오차분석 및 모델링)

  • Lee, Dong-Myung;Kim, Hag-Wone;Cho, Kwan-Youl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • This paper proposes the modeling of sensorless drive system using 120 degree conduction method for IPM (Interior Permanent Magnet) BLDC motors and analyzes characteristics of the terminal voltage that is used to detect the rotor position. This paper shows that the ZCP (Zero-Crossing Point) of the measured terminal voltage used In sensorless control is ahead of that of the back EMF of IPM motors because they have a saliency. This research also analyzes that the amount of position detection error is related to saliency, rotor speed, and load condition. In addition, this paper shows that motors have bigger advance angles than we have expected because the ZCP of terminal voltage precedes the actual ZCP, and under operation conditions such as heavy load and high speed it may generate abnormal currents that flow toward opposite direction after phase current becomes zero.