• Title/Summary/Keyword: current overshoot

Search Result 112, Processing Time 0.022 seconds

Review of Crash Landing Load Factor (추락착륙 하중배수에 대한 고찰)

  • Bae, Hyo-gil;Kim, Do-Hyung;Park, Jea Sung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.47-55
    • /
    • 2021
  • When an abnormal landing occurs, aircraft structures should be designed to guarantee occupants survivability without preventing egress. To find out fire root causes at crash, lots of fixed aircraft crash tests were conducted. Appropriate crash load factors were established with the comprehension of structural behavior based on dynamic analysis and investigation of human tolerance. Cargo restraint criteria were set up considering passengers safety and operational cost while analyzing past cargo aircraft accident data using a probabilistic approach. Reviewing results of past crash tests, current crash landing load factor was appreciated physically, medically, and economically.

Duplex Pulse Frequency Modulation Mode Controlled Series Resonant High Voltage Converter for X-Ray Power Generator

  • Chu Enhui;Ogura Koki;Moisseev Serguei;Okuno Atsushi;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.295-300
    • /
    • 2001
  • A variety of high voltage DC power supplies employing the high frequency inverter are difficult to achieve soft switching considering a quick response and no overshoot response under the wide load variation ranges which are used in medical-use x-ray high voltage generator from 20kV to 150kV in the output voltage and from 0.5mA to 1250mA, respectively. The authors develops soft switching high voltage DC power supply designed for x-ray power generator applications, which uses series resonant inverter circuit topology with a multistage voltage multiplier instead of a conventional high voltage diode rectifier connected to the second-side of a high-voltage transformer with a large turn ratio. A constant on-time dual mode frequency control scheme operating under a principle of zero-current soft switching commutation is described. Introducing the multistage voltage multiplier, the secondary transformer turn-numbers and stray capacitance of high-voltage transformer is effective to be greatly reduced. It is proved that the proposed high-voltage converter topology with dual mode frequency modulation mode control scheme is able to be the transient response and steady-state performance in high-voltage x-ray tube load. The effectiveness of this high voltage converter is evaluated and discussed on the basis of simulation analysis and observed data in experiment.

  • PDF

The Effects of 1, 4-Dihydropyridine Calcium Antagonists on the Normal and Ca-dependent, Slow Channel Mediated Action Potentials in the Guinea Pig's Papillary Muscle (1, 4-Dihydropyridine 칼슘길항제가 유두근의 정상활동전압 및 Ca-dependent, Slow Channel Mediated Action Potential에 미치는 영향)

  • Kim, Min-Hyung;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.207-218
    • /
    • 1988
  • Effects of 1, 4-dihydropyridine compounds, such as nifedipine, nisoldipine, nitrendipine, and nimodipine which were calcium antagonists on the normal and Ca-dependent, slow channel mediated action potentials in the guinea pig's papillary muscle were investigated. The glass microelectrode was impaled into a papillary muscle cell for measurements of potential changes with the simultaneous tracing of isometric contraction. The concentration of Ca antagonists were 1 mg/l (nifedipine and nisoldipine), 2 mg/l (nitrendipine and nimodipine), which showed the maximal inhibition of isometric contraction (above 90%) and simultaneous effects on the normal action potentials and only the halves of those concentrations were sufficient to observe the effects on the calcium action potentials. The data for analysis were only chosen when the microelectrode was maintained in a cell throughout the experiments. 1, 4-Dihydropyridine compounds decreased the action potential duration but did not affect the resting membrane potential, overshoot, and upstroke velocity of the normal action potentials with the decrease in the isometric contraction. And with the decrease in the area and amplitude of isometric contraction, the area, amplitude, upstroke velocity and duration of Ca action potential was decreased. But the differences in the effects of the Ca antagonists were not observed. Therefore it is inferred that the changes in normal and Ca action potential induced by the 1, 4-dihydropyridine compounds with a common chemical structure would be caused by the slow inward Ca-current, not by a fast Na-current.

  • PDF

Improvement of Dynamic Behavior of Shunt Active Power Filter Using Fuzzy Instantaneous Power Theory

  • Eskandarian, Nasser;Beromi, Yousef Alinejad;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1303-1313
    • /
    • 2014
  • Dynamic behavior of the harmonic detection part of an active power filter (APF) has an essential role in filter compensation performances during transient conditions. Instantaneous power (p-q) theory is extensively used to design harmonic detectors for active filters. Large overshoot of p-q theory method deteriorates filter response at a large and rapid load change. In this study the harmonic estimation of an APF during transient conditions for balanced three-phase nonlinear loads is conducted. A novel fuzzy instantaneous power (FIP) theory is proposed to improve conventional p-q theory dynamic performances during transient conditions to adapt automatically to any random and rapid nonlinear load change. Adding fuzzy rules in p-q theory improves the decomposition of the alternating current components of active and reactive power signals and develops correct reference during rapid and random current variation. Modifying p-q theory internal high-pass filter performance using fuzzy rules without any drawback is a prospect. In the simulated system using MATLAB/SIMULINK, the shunt active filter is connected to a rapidly time-varying nonlinear load. The harmonic detection parts of the shunt active filter are developed for FIP theory-based and p-q theory-based algorithms. The harmonic detector hardware is also developed using the TMS320F28335 digital signal processor and connected to a laboratory nonlinear load. The software is developed for FIP theory-based and p-q theory-based algorithms. The simulation and experimental tests results verify the ability of the new technique in harmonic detection of rapid changing nonlinear loads.

Double Boost Power-Decoupling Topology Suitable for Low-Voltage Photovoltaic Residential Applications Using Sliding-Mode Impedance-Shaping Controller

  • Tawfik, Mohamed Atef;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.881-893
    • /
    • 2019
  • This paper proposes a practical sliding-mode controller design for shaping the impedances of cascaded boost-converter power decoupling circuits for reducing the second order harmonic ripple in photovoltaic (PV) current. The cascaded double-boost converter, when used as power decoupling circuit, has some advantages in terms of a high step-up voltage-ratio, a small number of switches and a better efficiency when compared to conventional topologies. From these features, it can be seen that this topology is suitable for residential (PV) rooftop systems. However, a robust controller design capable of rejecting double frequency inverter ripple from passing to the (PV) source is a challenge. The design constraints are related to the principle of the impedance-shaping technique to maximize the output impedance of the input-side boost converter, to block the double frequency PV current ripple component, and to prevent it from passing to the source without degrading the system dynamic responses. The design has a small recovery time in the presence of transients with a low overshoot or undershoot. Moreover, the proposed controller ensures that the ripple component swings freely within a voltage-gap between the (PV) and the DC-link voltages by the small capacitance of the auxiliary DC-link for electrolytic-capacitor elimination. The second boost controls the main DC-link voltage tightly within a satisfactory ripple range. The inverter controller performs maximum power point tracking (MPPT) for the input voltage source using ripple correlation control (RCC). The robustness of the proposed control was verified by varying system parameters under different load conditions. Finally, the proposed controller was verified by simulation and experimental results.

The Design of Interleaved Bi-directional DC-DC Converter for Fuel Cell and Battery Hybrid System (연료전지·이차전지 하이브리드 시스템을 위한 인터리빙 양방향 DC-DC 컨버터 설계)

  • Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;Lee, Sang-Cheol;Lee, Dong-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Fuel cell power system is one of the most promising energy source for the alternative energy because it has unique advantages such as high energy density, no power drop during operation, and feasible to make compact size. However, due to very low response time, fuel cell is difficult to correspond to drastic load changes and start-up operation. For solving these problem, fuel cell power system must include energy storage device such as Li-Poly battery or super capacitor. Therefore, bi-directional DC-DC converter must be required for this storage device and fuel cell-PCS control. This paper presents a design and modeling of the bi-directional DC/DC converter. Firstly, we present modeling the boost and buck mode of the bi-directional converter through both PWM switch model and state space averaging technique. Secondly, in order to minimize output ripple and transient response overshoot, we have two identical DC-DC converters interleaved and adopt two-loop voltage-current controller. The proposed bi-directional DC-DC converter's modeling method and control design have been verified with computer simulation and experimentation.

Effects of Dopamine on the Contractility and Action Potential of the Rabbit Papillary Muscle (Dopamine이 토끼 유두근의 수축력과 활동전압에 미치는 영향)

  • Huh, In-Hoi;Park, Jong-Wan
    • YAKHAK HOEJI
    • /
    • v.32 no.6
    • /
    • pp.402-414
    • /
    • 1988
  • In order to clarify the receptor types and mechanisms underlying the positive inotropic effect of dopamine on the mammalian ventricular myocardium, the action potential, its first derivatives and isometric contraction of the rabbit papillary muscle were recorded using a force transducer and glass capillary microelectrodes filled with 3M KCl. The results were as follows; (1) In normal Tyrode solution, the contractile force was increased and duration of action potential was shortened with increments of dopamine concentration ($10^{-6}-10^{-4}M$). (2) The dose-response curve was markedly shifted to the right by pretreatment with reserpine (5mg/kg i.p., 24hrs prior to the experiment). (3) In 19mM $K^+-Tyrode$ solution, the duration of action potential, maximum rate of rise (V_{max}) of action potential and overshoot were significantly increased with increments of dopamine concentration ($10^{-6}-10^{-4}M$). (4) The inotropic effect of dopamine on the rabbit papillary muscle pretreated with reserpine was antagonized by atenolol ($10^{-6}M$), but not by phentolamine ($3{\times}10^{-6}M$). (5) In rabbit papillary muscle partially depolarized by 19mM $K^+-Tyrode$ solution, slow electrical response (calcium mediated action potential) as well as contraction were restored by dopamine ($10^{-4}M$); this restoration was blocked by calcium antagonists ($3{\times}10^{-5}M$ $LaCl_3{\cdot}6H_2O$, $3{\times}10^{-6}M$ diltiazem) or ${\beta}-adrenoceptor$ antagonist ($3{\times}10^{-6}M$ atenolol), but not affected by ${\alpha}-adrenoceptor$ antagonist ($10^{-5}M$ phentolamine, $3{\times}10^{-6}M$ yohimbine) or vascular dopaminergic receptor antagonist ($10^{-5}M$ haloperidol). The above results may be interpreted as that the positive inotropic effect of dopamine through both direct and indirect action are caused by increase in slow inward current ($Ca^{2+}$ influx into themyocardial cell), and the direct action is mainly due to the stimulation of ${\beta}-adrenoceptors$ in the rabbit papillary muscle.

  • PDF

Identification of Internal Resistance of Microbial Fuel Cell by Electrochemical Technique and Its Effect on Voltage Change and Organic Matter Reduction Associated with Power Management System (전기화학적 기법에 의한 미생물연료전지 내부저항 특성 파악 및 전력관리시스템 연계 전압 변화와 유기물 저감에 미치는 영향)

  • Jang, Jae Kyung;Park, Hyemin;Kim, Taeyoung;Yang, Yoonseok;Yeo, Jeongjin;Kang, Sukwon;Paek, Yee;Kwon, Jin Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.220-228
    • /
    • 2018
  • The internal resistance of microbial fuel cell (MFC) using stainless steel skein for oxidizing electrode was investigated and the factors affecting the voltage generation were identified. We also investigated the effect of power management system (PMS) on the usability for MFC and the removal efficiency of organic pollutants. The performance of a stack microbial fuel cell connected with (PMS) or PMS+LED was analyzed by the voltage generation and organic matter reduction. The maximum power density of the unit cells was found to be $5.82W/m^3$ at $200{\Omega}$. The maximum current density was $47.53A/m^3$ without power overshoot even under $1{\Omega}$. The ohmic resistance ($R_s$) and the charge transfer resistance ($R_{ct}$) of the oxidation electrode using stainless steel skein electrode, were $0.56{\Omega}$ and $0.02{\Omega}$, respectively. However, the sum of internal resistance for reduction electrode using graphite felts loaded Pt/C catalyst was $6.64{\Omega}$. Also, in order to understand the internal resistance, the current interruption method was used by changing the external resistance as $50{\Omega}$, $300{\Omega}$, $5k{\Omega}$. It has been shown that the ohm resistance ($R_s$) decreased with the external resistance. In the case of a series-connected microbial fuel cell, the reversal phenomenon occurred even though two cells having the similar performance. However, the output of the PMS constantly remained for 20 hours even when voltage reversal occurred. Also the removal ability of organic pollutants (SCOD) was not reduced. As a result of this study, it was found that buffering effect for a certain period of time when the voltage reversal occurred during the operation of the microbial fuel cell did not have a serious effect on the energy loss or the operation of the microbial fuel cell.

Electromagnetic Flapping Shutters for Phone Cameras (폰 카메라용 전자기력 Flapping 셔터)

  • Choi, Hyun-Young;Han, Won;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1385-1391
    • /
    • 2010
  • In this study, we present small-size, low-power, and high-speed electromagnetic flapping shutters for phone cameras. These shutters are composed of trapezoidal twin blades suspended by H-type torsional springs. The existing electrostatic rolling and flapping shutters need high input voltage, while the existing electromagnetic rotating shutters are too big to be used for phone cameras. To achieve low-power and high-speed angle motion for small-size electromagnetic flapping shutters for camera phones, low-inertia trapezoidal twin blades, each suspended by the low-stiffness H-type torsional springs, are employed. The electromagnetic flapping shutters used in this experimental study have steady-state rotational angles of $48.8{\pm}1.4^{\circ}$ and $64.4{\pm}1.0^{\circ}$ in the magentic fields of 0.15 T and 0.30 T, respectively, for an input current of 60 mA; the maximum overshoot angles are $80.2{\pm}3.5^{\circ}$ and $90.0{\pm}1.0^{\circ}$ in the magentic fields of 0.15 T and 0.30 T, respectively. The rising/settling times of the shutter while opening are 1.0 ms/20.0 ms, while those while closing are 1.7 ms/10.3 ms. Thus, we experimentally demonstrated that the smallsize (${\sim}8{\times}8{\times}2\;mm^3$), low-power (${\leq}60\;mA$), and high-speed (~1/370 s) electromagnetic flapping shutters are suitable for phone cameras.

Design of Trajectory Following Controller for Parafoil Airdrop System (패러포일 투하 시스템의 궤적 추종 제어기의 설계)

  • Yang, Bin;Choi, Sun-Young;Lee, Joung-Tae;Lim, Dong-Keun;Hwang, Chung-Won;Park, Seung-Yub
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.215-222
    • /
    • 2014
  • In this paper, parafoil airdrop system has been designed and analyzed. 6-degrees of freedom (6-DOF) model of the parafoil system is set up. Nonlinear model predictive control (NMPC) and Proportion integration differentiation (PID) methods were separately applied to adjust the flap yaw angle. Compared the results of setting time and overshoot time of yaw angle, it is found that the of yaw angle is more stable by using PID method. Then, trajectory following controller was designed based on the simulation results of trajectory following effects, which was carried out by using MATLAB. The lateral offset error of parafoil trajectory can be eliminated by its lateral deviation control. The later offset deviation reference was obtained by the interpolation of the current planning path. Moreover, using the designed trajectory, the trajectory following system was simulated by adding the wind disturbances. It is found that the simulation result is highly agreed with the designed trajectory, which means that wind disturbances have been eliminated with the change of yaw angle controlled by PID method.