• Title/Summary/Keyword: current measurement

Search Result 3,855, Processing Time 0.043 seconds

A Portable Potentiostat with Bluetooth Communication for Square wave Voltammetry Measurement (네모파 전압전류법 측정을 위한 블루투스 기반 휴대형 포텐쇼스탯)

  • Shim, Wonsik;Han, Ji-Hoon;Kim, Suyun;Kwon, Hyun Jeong;Pak, Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.622-627
    • /
    • 2016
  • This paper describes the development of a portable potentiostat which can perform square wave voltammetry on electrochemical sensors and wireless transmission of the measured data to a smartphone using Bluetooth. The potentiostat consists of a square wave potential pulse generation circuit for applying the potential pulse to the electrochemical sensor, a reduction/oxidation (or redox) current measurement circuit, and Bluetooth for wireless data transmission to an Android-based smartphone. The measured data are then processed to show the output graph on the smart phone screen in real time. This data transformation into a graph is carried out by developing and installing a simple transformation application software in the Android-based smartphone. This application software also enables the user to set and change the measurement parameters such as the applied voltage range and measured current range at user's convenience. The square voltammetry output data measured with the developed portable potentiostat were almost same as the data of the commercial potentiostat. The measured oxidation peak current with the commercial potentiostat was $11.35{\mu}A$ at 0.26 V and the measured oxidation peak current with the developed system was $12.38{\mu}A$ at 0.25 V. This proves that performance of the developed portable measurement system is comparable to the commercial one.

Detection of tension force reduction in a post-tensioning tendon using pulsed-eddy-current measurement

  • Kim, Ji-Min;Lee, Jun;Sohn, Hoon
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.129-139
    • /
    • 2018
  • Post-tensioning (PT) tendons are commonly used for the assembly of modularized concrete members, and tension is applied to the tendons during construction to facilitate the integrated behavior of the members. However, the tension in a PT tendon decreases over time due to steel corrosion and concrete creep, and consequently, the stress on the anchor head that secures the PT tendon also diminishes. This study proposes an automatic detection system to identify tension reduction in a PT tendon using pulsed-eddy-current (PEC) measurement. An eddy-current sensor is installed on the surface of the steel anchor head. The sensor creates a pulsed excitation to the driving coil and measures the resulting PEC response using the pick-up coil. The basic premise is that the tension reduction of a PT tendon results in stress reduction on the anchor head surface and a change in the PEC intensity measured by the pick-up coil. Thus, PEC measurement is used to detect the reduction of the anchor head stress and consequently the reduction of the PT tendon force below a certain threshold value. The advantages of the proposed PEC-based tension-reduction-detection (PTRD) system are (1) a low-cost (< $ 30), low-power (< 2 Watts) sensor, (2) a short inspection time (< 10 seconds), (3) high reliability and (4) the potential for embedded sensing. A 3.3 m long full-scale monostrand PT tendon was used to evaluate the performance of the proposed PTRD system. The PT tendon was tensioned to 180 kN using a custom universal tensile machine, and the tension was decreased to 0 kN at 20 kN intervals. At each tension, the PEC responses were measured, and tension reduction was successfully detected.

Electrical Characteristics Measurement of Eddy Current Testing Instrument for Steam Generator in NPP (원전 증기발생기 와전류검사 장치의 전기적 특성 측정)

  • Lee, Hee-Jong;Cho, Chan-Hee;Yoo, Hyun-Joo;Moon, Gyoon-Young;Lee, Tae-Hun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.465-471
    • /
    • 2013
  • A steam generator in nuclear power plant is a heatexchager which is used to convert water into steam from heat produced in a nuclear reactor core, and the steam produced in steam generator is delivered to the turbine to generate electricity. Because of damage to steam generator tubing may impair its ability to adequately perform required safety functions in terms of both structural integrity and leakage integrity, eddy current testing is periodically performed to evaluate the integrity of tubes in steam generator. This assessment is normally performed during a reactor refueling outage. Currently, the eddy current testing for steam generator of nuclear power plant in Korea is performed in accordance with KEPIC & ASME Code requirements, the eddy current testing system is consists of remote data acquisition unit and data analysis program to evaluate the acquired data. The KEPIC & ASME Code require that the electrical properties of remote data acquisition unit, such as total harmonic distortion, input & output impedance, amplifier linearity & stability, phase linearity, bandwidth & demodulation filter response, analog-to-digital conversion, and channel crosstalk shall be measured in accordance with the KEPIC & ASME Code requirements. In this paper, the measurement requirements of electrical properties for eddy current testing instrument described in KEPIC & ASME Code are presented, and the measurement results of newly developed eddy current testing instrument by KHNP(Korea Hydro & Nuclear Power Co., LTD) are presented.

The variation of critical current by the formation of crack in a high-temperature superconducting tape (크랙에 의한 고온 초전도체 테이프의 임계전류 특성변화)

  • 박을주;설승윤
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.73-77
    • /
    • 2002
  • The variation of critical current by the formation of crack in a high temperature super-conducting tape was studied by experimental and numerical analyses. The current-voltage relation of HTS tape is measured by the four-point measurement method. Numerical analyses are used to solve two dimensional heat conduction equation, considering the temperature distribution. By comparing current-voltage relation of experimental and numerical results, the validity of numerical method is verified.

Modeling of the Sampling Effect in the P-Type Average Current Mode Control

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.59-63
    • /
    • 2011
  • This paper presents the modeling of the sampling effect in the p-type average current mode control. The prediction of the high frequency components near half of the switching frequency in the current loop gain is given for the p-type average current mode control. By the proposed model, the prediction accuracy is improved when compared to that of conventional models. The proposed method is applied to a buck converter, and then the measurement results are analyzed.

Optical Current Measuring System for Compensating Interference by Adjacent Electric Wires

  • Cho, Jae-Kyong
    • Journal of Magnetics
    • /
    • v.12 no.4
    • /
    • pp.156-160
    • /
    • 2007
  • In this paper, we analyze the errors associated with magnetic field interference for fiber-optic current sensors working in a three-phase electric system and provide a solution to compensate the interference. For many practical conductor arrangements, the magnetic filed interference may cause errors unacceptable for the accuracy requirements of the sensors. We devised a real time compensation method for the interference by introducing geometric and weight factors. We realized the method using simple electronic circuits and obtained the real time compensated outputs with errors of ${\pm}1%$.

An investigation on the Improvement of the Working Environment Measurement Reporting Policy (작업환경측정 보고제도 개선 방안 도출을 위한 조사 연구)

  • Lim, Dae Sung;Kim, Chi-Nyon;Lee, Seung kil;Park, Jung-Keun;Kim, Ki-Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.172-181
    • /
    • 2022
  • Objectives: In order to reduce the burden on employers and increase the reliability of measurement results, improvements to the provisions related to the work environment measurement reporting system, such as the current Occupational Safety and Health Act and its Enforcement Rules, are planned. This study aimed to suggest improvements for the work environment measurement reporting system through a survey and Delphi investigation. Method: This survey included workplaces (health managers), national institutions (the Ministry of Employment and Labor) that use the results of the work environment measurement reporting system for policy and supervision purposes, and work environment measurement institutions that enter the results were included. In addition to the survey, we tried to derive results through meetings with stakeholders and expert advisory meetings. Results: It is difficult to abolish or partially improve the reporting system under the Enforcement Regulations of the Occupational Safety and Health Act at this point because the opinions of workplaces, supervisory agencies, and measuring agencies differ in terms of its intended purpose and use. In the case of high-exposure harmful factors (over 50% on the basis of exposure) in the "comprehensive opinion" described in the work environment measurement results table, it is necessary to insert unit of work with exposed harmful factors, exposure factors, and current conditions in checklists or tables so that they can be reflected in government policies. In the case of workplaces that are feared to be highly exposed to substances subject to measurement, it seems desirable to improve them so that industrial health instructors registered with the Korea Safety and Health Agency or local labor offices can provide technical guidance. As an improvement plan to increase the reliability of data and the use of big data, it is necessary to improve the input method for processes and jobs. Conclusion: The laws and regulations of the work environment measurement reporting system are difficult to revise due to a lack of consensus among current stakeholders, but improvements can be achieved by improving the Ministry of Employment and Labor's notifications and other means. In addition, in order to effectively utilize the data from the K2B system, it is necessary to improve the input method for processes and jobs.

Application of New Measurement Method for Improvement of Rock Joint Roughness Underestimation (암석 절리면 거칠기 과소평가의 개선을 위한 새로운 측정방법의 적용)

  • Hong, Eun-Soo;Lee, Joo-Gong;Lee, Jong-Sub;Lee, In-Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.133-142
    • /
    • 2006
  • Many methods have been tried to more correctly measure rock joint roughness. However, true roughness may be distorted and underestimated due to the sampling interval and measurement method. Thus, currently used measurement methods produce a dead zone and distort roughness profiles. The purpose of this study is to suggest new roughness measurement method by a camera-type 3D scanner as an alternative of currently used methods. First, the underestimation of artificial roughness is analyzed by using the current measurement method such as laser profilometry. Second, we replicate eight specimens from two rock joint surfaces, and digitize by a 3D scanner. Then, the roughness coefficient values obtained from eight numbers of 3D surface data and from three hundred twenty numbers of 2D profiles data are analyzed by using current and new measurement methods. The artificial simulation confirms that the sampling interval is one of main factors for the distortion of roughness and shows that inclination of waviness may not be considered any current methods. The experimental results show that the camera-type 3D scanner produces 10% larger roughness values than current methods. As the proposed new method is a fast, high precision and more accurate method for the roughness measurement, it should be a promising technique in this area.

Properties of thermally stimulated current of PAAS thin film using spin coating method (Spin coating한 polyamic acid alkylamine salt(PAAS) 박막의 열자격 전류 특성)

  • Lee, H.S.;Lee, S.Y.;Lee, W.J.;Kim, T.W.;Kang, D.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1719-1721
    • /
    • 1996
  • This paper describes the thermally stimulated current(TSC) of PAAS spin coated film and the electrical properties of pre TSC measurement and after TSC test specimens. The TSC measurement were performed from room temperature to about $280^{\circ}C$ and the temperature was increased by $5^{\circ}C/min$ automatically. It shows that two peaks of TSC are observed at about $50^{\circ}C$ and about $160^{\circ}C$. Result of this measurement indicate that one peak; $50^{\circ}C$ is from alkyl group; other peak at $160^{\circ}C$ is due to alkyl and C-O group of PAAS. Addition to larger peak at about $160^{\circ}C$ is due to dipolemoment of PAAS film. This result is proved by DSC measurement of PAAS film. The electrical properties of pre and after TSC were measured by currant-voltage(l-V) characteristics. The current-voltage characteristics after TSC specimens are increased the conductivity. The electrical properties of pre-after TSC measurement specimen is in the middle of imidization of PAAS. Because of this result a thermal imidization was performed at $300^{\circ}C$ for 1 hour.

  • PDF