• Title/Summary/Keyword: current density imaging

Search Result 64, Processing Time 0.026 seconds

Fabrication and Characterization of Lead Oxide (PbO) Film for High Efficiency X-ray Detector (고효율 X선 검출기 적용을 위한 PbO 필름 제작 및 특성 연구)

  • Cho, Sung-Ho;Kang, Sang-Sik;Choi, Chi-Won;Kwun, Chul;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.329-329
    • /
    • 2007
  • Photoconductive poly crystalline lead oxide coated on amorphous thin film transistor (TFT) arrays is the best candidate for direct digital x-ray detector for medical imaging. Thicker films with lessening density often show lower x-ray induced charge generation and collection becomes less efficient. In this work, we present a new methodology used for the high density deposition of PbO. We investigate the structural properties of the films using X-ray diffraction and electron microscopy experiments. The film coatings of approximately $200\;{\mu}m$ thickness were deposited on $2"{\times}2"$ conductive-coated glass substrates for measurements of dark current and x-ray sensitivity. The lead oxide (PbO) films of $200\;{\mu}m$ thickness were deposited on glass substrates using a wet coating process in room temperature. The influence of post-deposition annealing on the characteristics of the lead oxide films was investigated in detail. X-ray diffraction and scanning electron microscopy, and atomic force microscopy have been employed to obtain information on the morphology and crystallization of the films. Also we measured dark current, x-ray sensitivity and linearity for investigation of the electrical characteristics of films. It was found that the annealing conditions strongly affect the electrical properties of the films. The x-ray induced output charges of films annealed in oxygen gas increases dramatically with increasing annealing temperatures up to $500^{\circ}C$ but then drops for higher temperature anneals. Consequently, the more we increase the annealing temperatures, the better density and film quality of the lead oxide. Analysis of this data suggests that incorporation and decomposition reactions of oxygen can be controlled to change the detection properties of the lead oxide film significantly. Post-deposition thermal annealing is also used for densely film. The PbO films that are grown by new methodology exhibit good morphology of high density structure and provide less than $10\;pA/mm^2$ dark currents as they show saturation in gain (at approximate fields of $4\;V/{\mu}m$). The ability to operate at low voltage gives adequate dark currents for most applications and allows voltage electronics designs.

  • PDF

Magnetic Resonance Current Density Imaging

  • 오석훈;이원희;이항로;한재용;우응제;조민형;이수열
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.99-99
    • /
    • 2002
  • 목적: 인체에 전류를 주입하면 체내의 생체조직의 임피던스 분포에 따라서 전류밀도 분포가 결정된다. 이러한 전류밀도 분포에 대한 정보는 전기임피던스 단층촬영법과 유방암 진단, 체내 온도 분포의 영상화, 전기자극에 의한 체내 전류 경로의 시각화에 대한 연구에 응용될 수 있다. 한편 이러한 전류밀도 분포는 전류주입 자기공명영상기법에 의해 영상화할 수 있으며, 본 논문은 3차원 팬텀 내부의 전류밀도 분포를 영상화하는 전류주입 자기공명영상기법의 실험결과를 기술한다.

  • PDF

Study on image quality improvement using Non-Linear Look-Up Table (비선형 Look-Up Table을 통한 영상 화질 개선에 관한 연구)

  • Kim, Sun-Chil;Lee, Jun-Il
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.5 no.1
    • /
    • pp.32-44
    • /
    • 2002
  • The role of radiology department has been greatly increased in the past few years as the technology in the medical imaging devices improved and the introduction of PACS (Picture Archiving and Communications System) to the conventional film-based diagnostic structure is a truly remarkable factor to the medical history. In addition, the value of using digital information in medical imaging is highly expected to grow as the technology over the computer and the network improves. However, the current medical practice, using PACS is somewhat limited compared to the film-based conventional one due to a poor image quality. The image quality is the most important and inevitable factor in the PACS environment and it is one of the most necessary steps to more wide practice of digital imaging. The existing image quality control tools are limited in controlling images produced from the medical modalities, because they cannot display the real image changing status. Thus, the image quality is distorted and the ability to diagnosis becomes hindered compared to the one of the film-based practice. In addition, the workflow of the radiologist greatly increases; as every doctor has to perform his or her own image quality control every time they view images produced from the medical modalities. To resolve these kinds of problems and enhance current medical practice under the PACS environment, we have developed a program to display a better image quality by using the ROI optical density of the existing gray level values. When the LUT is used properly, small detailed regions, which cannot be seen by using the existing image quality controls are easily displayed and thus, greatly improves digital medical practice. The purpose of this study is to provide an easier medical practice to physicians, by applying the technology of converting the H-D curves of the analog film screen to the digital imaging technology and to preset image quality control values to each exposed body part, modality and group of physicians for a better and easier medical practice. We have asked to 5 well known professional physicians to compare image quality of the same set of exam by using the two different methods: existing image quality control and the LUT technology. As the result, the LUT technology was enormously favored over the existing image quality control method. All the physicians have pointed out the far more superiority of the LUT over the existing image quality control method and highly praised its ability to display small detailed regions, which cannot be displayed by existing image quality control tools. Two physicians expressed the necessity of presetting the LUT values for each exposed body part. Overall, the LUT technology yielded a great interest among the physicians and highly praised for its ability to overcome currently embedded problems of PACS. We strongly believe that the LUT technology can enhance the current medical practice and open a new beginning in the future medical imaging.

  • PDF

A new gradient coil design technique for open magnetic resonance imaging systems (개방형 자기공명영상시스템용 경사자계코일의 새로운 설계기법)

  • Lee, Soo-Yeol;Park, Bu-Sik;Yi, Jeong-Han;Yi, Wan
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.72-79
    • /
    • 1997
  • Most open magnetic resonance imaging systems have used the planar gradient coils whose inductances were minimized through the magnetic energy minimization procedure in the spatial frequency domain. Though the planar gradient coils have smaller inductance than conventional gradient coils, the planar gradient coils often suffer from their poor magnetic field linearity. Scaling the spatial frequencies of the current density function designed by the magnetic energy minimization, magnetic field linearity of the planar gradient coils can be greatly improved with small sacrifice of gradient coil inductance. We have found that the figure of merit of the planar gradient coils, defined by the gradient strength divided by the linearity error and the inductance, can be improved by proposed technique.

  • PDF

Quantitative Evaluation of Hepatic Steatosis Using Advanced Imaging Techniques: Focusing on New Quantitative Ultrasound Techniques

  • Junghoan Park;Jeong Min Lee;Gunwoo Lee;Sun Kyung Jeon;Ijin Joo
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.13-29
    • /
    • 2022
  • Nonalcoholic fatty liver disease, characterized by excessive accumulation of fat in the liver, is the most common chronic liver disease worldwide. The current standard for the detection of hepatic steatosis is liver biopsy; however, it is limited by invasiveness and sampling errors. Accordingly, MR spectroscopy and proton density fat fraction obtained with MRI have been accepted as non-invasive modalities for quantifying hepatic steatosis. Recently, various quantitative ultrasonography techniques have been developed and validated for the quantification of hepatic steatosis. These techniques measure various acoustic parameters, including attenuation coefficient, backscatter coefficient and speckle statistics, speed of sound, and shear wave elastography metrics. In this article, we introduce several representative quantitative ultrasonography techniques and their diagnostic value for the detection of hepatic steatosis.

Simple modeling to explore temperatures, heated temperature, and Kappa values of a current sheet observation

  • Lee, Jin-Yi;Raymond, John C.;Reeves, Katharine K.;Shen, Chengcai;Kahler, Stephen;Moon, Yong-Jae;Kim, Yeon-Han
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.79.2-79.2
    • /
    • 2021
  • We explore the range of possibilities of temperatures, heated temperature, and Kappa values of a current sheet observation on 2017 September 10. First, we construct a grid model with rapid heating (Theat) and various Kappa (κ) values. We assume a simple density model and use adiabatic cooling to set the temperature during expansion. Next, we calculate the ion fractions using a time-dependent ionization model with adiabatic cooling and various Kappa values. The calculated ion fractions are used to simulate the DNs of the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. Then, we explore the possible range of the temperatures and Kappa values, comparing the simulated images with the observations. Finally, we discuss the range of the heated temperature and Kappa values and whether the result of this study suggests continuous heating of the current sheet plasma during the expansion.

  • PDF

A high-density gamma white spots-Gaussian mixture noise removal method for neutron images denoising based on Swin Transformer UNet and Monte Carlo calculation

  • Di Zhang;Guomin Sun;Zihui Yang;Jie Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.715-727
    • /
    • 2024
  • During fast neutron imaging, besides the dark current noise and readout noise of the CCD camera, the main noise in fast neutron imaging comes from high-energy gamma rays generated by neutron nuclear reactions in and around the experimental setup. These high-energy gamma rays result in the presence of high-density gamma white spots (GWS) in the fast neutron image. Due to the microscopic quantum characteristics of the neutron beam itself and environmental scattering effects, fast neutron images typically exhibit a mixture of Gaussian noise. Existing denoising methods in neutron images are difficult to handle when dealing with a mixture of GWS and Gaussian noise. Herein we put forward a deep learning approach based on the Swin Transformer UNet (SUNet) model to remove high-density GWS-Gaussian mixture noise from fast neutron images. The improved denoising model utilizes a customized loss function for training, which combines perceptual loss and mean squared error loss to avoid grid-like artifacts caused by using a single perceptual loss. To address the high cost of acquiring real fast neutron images, this study introduces Monte Carlo method to simulate noise data with GWS characteristics by computing the interaction between gamma rays and sensors based on the principle of GWS generation. Ultimately, the experimental scenarios involving simulated neutron noise images and real fast neutron images demonstrate that the proposed method not only improves the quality and signal-to-noise ratio of fast neutron images but also preserves the details of the original images during denoising.

LEFT INFERIOR FRONTAL GYRUS RELATED TO REPETITION PRIMING: LORETA IMAGING WITH 128-CHANNEL EEG AND INDIVIDUAL MRI

  • Kim, Young-Youn;Kim, Eun-Nam;Roh, Ah-Young;Goong, Yoon-Nam;Kim, Myung-Sun;Kwon, Jun-Soo
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2005.05a
    • /
    • pp.151-153
    • /
    • 2005
  • We investigated the brain substrate of repetition priming on the implicit memory taskusing low-resolution electromagnetic tomography (LORETA) with high-density 128 channel EEG and individual MRI as a realistic head model. Thirteen right-handed, healthy subjects performed a word/nonword discrimination task, in which the words and nonwords were presented visually,and some of the words appeared twice with a lag of one or five items. All of the subjects exhibited repetition priming with respect to the behavioral data, in which a faster reaction time was observed to the repeated word (old word) than to the first presentation of the word (new word). The old words elicited more positive-going potentials than the new words, beginning at 200 ms and lasting until 500 ms post-stimulus. We conducted source reconstruction using LORETA at a latency of 400 ms with the peak mean global field potentials and used statistical parametric mapping for the statistical analysis. We found that the source elicited by the old words exhibited a statistically significant current density reduction in the left inferior frontal gyrus. This is the first study to investigate the generators of repetition priming using voxel-by-voxel statistical mapping of the current density with individual MRI and high-density EEG.

  • PDF

Photo-Induced Memory of an OLED in the presence of thio-Michler's ketone

  • Enokida, Toshio;Gwon, Tae-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.281-284
    • /
    • 2004
  • Photo-induced memory effect of an organic light-emitting diode(OLED) composed of a hydrazone-derivative(DBAH) dispersed in bis-phenol-A type polycarbonate polymer(PCA) in the presence of thio-Michler's ketone, was investigated by the measuring of the current density and luminance at the various conditions. After the light exposure, the current of the OLED was decreased approximately one order, and the luminance of the OLED also decresed. This memory effct was erasable by heating the OLED to the temperature higher than the glass transition temperature(Tg). As shown in this result, we found the memory effect was erased by heating and returned to its original state in the hole injecting layer(HIL) of the OLED. A series of these phenomena was suggested the possibility of the application to the imaging plate.

  • PDF

Two-Paralleled PWM Power Amplifiers to Generate Highly Precise Gradient Magnetic Fields in MRI Systems

  • Watanabe, Shuji;Boyagoda, Prasanna;Takano, Hiroshi;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.569-574
    • /
    • 1998
  • This paper presents a two-paralleled 4 quadrant DC chopper type PWM power conversion circuit in order to generate a gradient magnetic field in the Magnetic Resonance Imaging (MRI) system. This power amplifier is connected in parallel with the conventional 4-quadrant DC chopper using IGBTs at their inputs/outputs to realize further high-power density, high speed current tracking control, and to get a low switching ripple amplitude in a controlled current in the Gradient Coils (GCs). Moreover, the power conversion circuit has to realize quick rise/fall response characteristics in proportion to various target currents in GCs. It is proposed in this paper that a unique control scheme can achieve the above objective. DSP-based control systems realize a high control facility and accuracy. It is proved that the new control system will greatly enlarge the diagnostic target and improve the image quality of MRI.

  • PDF