• Title/Summary/Keyword: current Harmonics

Search Result 897, Processing Time 0.029 seconds

Real-Time Implementation of Shunt Active Filter P-Q Control Strategy for Mitigation of Harmonics with Different Fuzzy M.F.s

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.821-829
    • /
    • 2012
  • This research article presents a novel approach based on an instantaneous active and reactive power component (p-q) theory for generating reference currents for shunt active filter (SHAF). Three-phase reference current waveforms generated by proposed scheme are tracked by the three-phase voltage source converter in a hysteresis band control scheme. The performance of the SHAF using the p-q control strategy has been evaluated under various source conditions. The performance of the proposed control strategy has been evaluated in terms of harmonic mitigation and DC link voltage regulation. In order to maintain DC link voltage constant and to generate the compensating reference currents, we have developed Fuzzy logic controller with different (Trapezoidal, Triangular and Gaussian) fuzzy M.F.s. The proposed SHAF with different fuzzy M.F.s is able to eliminate the uncertainty in the system and SHAF gains outstanding compensation abilities. The detailed simulation results using MATLAB/SIMULINK software are presented to support the feasibility of proposed control strategy. To validate the proposed approach, the system is also implemented on a real time digital simulator and adequate results are reported for its verifications.

Novel Carrier-Based PWM Strategy of a Three-Level NPC Voltage Source Converter without Low-Frequency Voltage Oscillation in the Neutral Point

  • Li, Ning;Wang, Yue;Lei, Wanjun;Niu, Ruigen;Wang, Zhao'an
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.531-540
    • /
    • 2014
  • A novel carrier-based PWM (CBPWM) strategy of a three-level NPC converter is proposed in this paper. The novel strategy can eliminate the low-frequency neutral point (NP) voltage oscillation under the entire modulation index and full power factor. The basic principle of the novel strategy is introduced. The internal modulation wave relationship between the novel CBPWM strategy and traditional SPWM strategy is also studied. All 64 modulation wave solutions of the CBPWM strategy are derived. Furthermore, the proposed CBPWM strategy is compared with traditional SPWM strategy regarding the output phase voltage THD characteristics, DC voltage utilization ratio, and device switching losses. Comparison results show that the proposed strategy does not cause NP voltage oscillation. As a result, no low-frequency harmonics occur on output line-to-line voltage and phase current. The novel strategy also has higher DC voltage utilization ratio (15.47% higher than that of SPWM strategy), whereas it causes larger device switching losses (4/3 times of SPWM strategy). The effectiveness of the proposed modulation strategy is verified by simulation and experiment results.

Modeling and Control of a Grid Connected VSI using a Delta Connected LCL Filter ($\Delta$-결선 LCL 필터를 사용하는 삼상 계통 연계 인버터의 모델링과 제어)

  • Lee, Sang-In;Lee, Kui-Jun;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • There are two ways to connect an LCL filter in a grid-connected VSI. A wye connected LCL filter is general way, and the other is a delta connected LCL filter. While a model of a system with a wye connected LCL filter is calculated, a model of a system with a delta connected LCL filter is not formulated. Thus, we propose a mathematical model of a system with a delta connected LCL filter. Also, a comparative study of capacitor current harmonics of a delta connected LCL filter and a wye connected LCL filter is included. Experimental results exhibit that it is advantageous to control grid currents for a system with a delta connected LCL filter.

Hybrid Series Active Power filter Based on Performance Function Theory for 3-Phase 4-wire System (성능함수제어 알고리즘을 이용한 3상 4선식 하이브리드형 직렬능동전력필터)

  • Kim, Jin-Sun;Shin, Jae-Hwa;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1096-1098
    • /
    • 2003
  • In this paper, the control algorithm and control methods for a combined system of shunt passive filter and series active filter in 3-phase 4-wire system are discussed. Moreover, the 3-phase 4-wire system is widely employed in distributing electric energy to several office building and manufacturing plants. In such systems, the third harmonic and odd multiples of $3^{rd}$($9^{th}$, $15^{th}$, etc.) are termed as triple and zero sequence components that do not cancel each other in the system neutral. As a result, the triple harmonics add together creating a primary source of excessive neutral current. Regarding this concern, this paper presents a new control scheme for a series hybrid active system. This series active power filter acts not only as a harmonic compensator but also as a harmonic isolator. Hence the required rating of the series active filter is much smaller than that of a conventional shunt active filter. However, the performance of the combined system is greatly influenced by the filtering algorithm employed in the active power filter. This paper proposes a series active power filter scheme based on performance function. Some experiments was executed and experimental results from a prototype active power filter confirm the suitability of the proposed approach.

  • PDF

Development of Real-time Diagnosis Method for PEMFC Stack via Intermodulation Method (Intermodulation 방법에 의한 자동차용 연료전지 스택의 실시간 진단방법 개발)

  • Lee, Young-Hyun;Yoo, Seungyeol;Kim, Jonghyeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.76-83
    • /
    • 2014
  • During PEMFC(Proton Exchange Membrane Fuel Cell) operation monitoring and diagnosis are important issues for reliability and durability. Stack defect can be followed by a critical cell voltage drop in the stack. One method for monitoring the cell voltage is CVM(Cell Voltage Monitoring), where all cells in the stack are electrically connected to a voltage measuring system and monitored these voltages. The other methods are based on the EIS(Electrochemical Impedance Spectroscopy) and on nonlinear frequency response. In this paper, intermodulation(IM) method for diagnosis PEMFC stack is introduced. To detect one or more critical PEMFC cell voltage PEMFC stack is excited by two or more test sinusoid current, and the frequency response of the stack voltage is analyzed. If one or more critical cell voltage exists, higher harmonics on the voltage frequency spectrum will appear. For the proposed IM method, stack simulation and experiments are conducted.

Development of High-speed Elevator Drive System using Permanent-magnet Synchronous Motor (영구 자석형 동기 전동기를 이용한 고속 엘리베이터 구동 시스템 개발)

  • Ryu Hyung-Min;Kim Sung-Jun;Sul Seung-Ki;Kwon Tae-Seok;Kim Ki-Su;Shim Young-Seok;Seok Ki-Riong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.385-388
    • /
    • 2001
  • In this paper, the gearless traction machine drive system using a permanent-maget motor for high-speed elevators is addressed. This application of permanent-magnet motor to the elevator traction machine enables several improvements including higher efficiency, better ride comfort, smaller size and weight, and so on. PWM boost converter is also adopted so that DC-link voltage regulation, hi-directional power flow, and controllable power factor with reduced input current harmonics are possible. To increase reliability and performance, the control board, which can include the car and group controller as well as PWM converter and inverter controller, is designed based on TMS320VC33 DSP The simulator system for high-speed elevators has been developed so that the drive system of high-speed elevator can be tested without my limitation on ride distance and the load condition. Some experimental results are given to verify the effectiveness of the developed system.

  • PDF

Single-Stage High Power Factor Converter for 90-260Vrms Input (90-260Vrms 입력 범위를 갖는 단일 전력단 고역률 컨버터)

  • 김학원;문건우;조관열;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.18-29
    • /
    • 2002
  • Generally, the single-stage power factor corrected converter has a problem of high dc link voltage. In the case of high line voltage, especially, the dc link voltage is verb high under the light load condition. To solve this problem, a new single stage power factor corrected AC/DC converter has been proposed. The proposed converter has huck topology as a power factor corrector. To prove feasibility of the proposed converter, the design example of the proposed converter has been presented. The design considerations and experimental results for the proposed converter have been shown. The experimental results show that the line input current harmonics can meet IEC1000-3-2 Class D requirements for the range of line input voltage from 90Vrms to 260Vrms.

Active Power Filter Type Uninterruptible Power Supply (UPS) (전력용 능동필터형 무정전 전원장치)

  • 김제홍;최재호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.100-105
    • /
    • 1998
  • This paper proposes a new control strategy of bidirectional uninterruptible power supply (UPS) with the performance of active power filter which compensates the harmonics and reactive power. With only one power stage, it is working simultaneously as the AC/DC rectifier/battery charger and DC/AC inverter to the operation of battery charging or back-up power supplying. Therefore the operation of the proposed system can be divided into the modes, such as the active power filter mode and the battery back-up power mode. And a novel closed-loop control strategy is used to calculate the reference current. The performance of the proposed 5[kVA] system is verified by the simulation and experimental results.

  • PDF

Operating Characteristics of Squirrel-Cage Induction Motor of 5-Phase 1.5kW (5상 1.5kW 농형 유도전동기의 운전특성)

  • Kim, Min-Huei;Jung, Hyung-Woo;Song, Hyun-Jig
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.52-59
    • /
    • 2014
  • This paper presents an improved operating characteristics of squirrel-cage induction motor(IM) for 5-phase 1.5kW, 220V, 60Hz in order to study a polyphase AC machinery that keep hold of advantages more than traditional three-phase a IM, such as reducing a amplitude of torque pulsation, decreasing electric noises, and increasing the reliability. The developed manufacturing motor was necessary to do improvement of speed regulation, efficiency, operating characteristics, and so on at rated load. There are remake a redesigned and distributed stator winding connection without changing the frames of stator and rotor core in previous established the motor by a repeat tests. There are shown a experiments results of no-load test, locked rotor test, operating characteristics at variable load, FFT analysis of harmonics within output voltages and current waveform, decided motor parameters.

Single-Phase Bridgeless Zeta PFC Converter with Reduced Conduction Losses

  • Khan, Shakil Ahamed;Rahim, Nasrudin Abd.;Bakar, Ab Halim Abu;Kwang, Tan Chia
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.356-365
    • /
    • 2015
  • This paper presents a new single phase front-end ac-dc bridgeless power factor correction (PFC) rectifier topology. The proposed converter achieves a high efficiency over a wide range of input and output voltages, a high power factor, low line current harmonics and both step up and step down voltage conversions. This topology is based on a non-inverting buck-boost (Zeta) converter. In this approach, the input diode bridge is removed and a maximum of one diode conducts in a complete switching period. This reduces the conduction losses and the thermal stresses on the switches when compare to existing PFC topologies. Inherent power factor correction is achieved by operating the converter in the discontinuous conduction mode (DCM) which leads to a simplified control circuit. The characteristics of the proposed design, principles of operation, steady state operation analysis, and control structure are described in this paper. An experimental prototype has been built to demonstrate the feasibility of the new converter. Simulation and experimental results are provided to verify the improved power quality at the AC mains and the lower conduction losses of the converter.