• 제목/요약/키워드: curing characteristic

Search Result 140, Processing Time 0.028 seconds

The Effect of EVA Sheet Gel Content Depending on Curing Condition for Photovoltaic Module (PV모듈용 EVA Sheet의 Curing조건에 따른 Gel Content 특성)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Kyung-Eun;Kim, Hyun-Il;Yu, Kwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1155-1156
    • /
    • 2006
  • In this paper, we analyzed the effect of EVA Sheet Gel Content depending on curing condition for photovoltaic module. Gel Content was measured by manufacturing Glass/EVA Sheet/Back Sheet scheme at several curing temperature and curing time. And the surface analysis of EVA Sheet depending on process condition could be observed using SEM(Scanning Electron Microscope). Through this experiment, we could confirm that there are differences on Gel Content of EVA Sheet and surface configuration depending on curing temperature and curing time. To find out the optical characteristic dependency on curing condition, Class/EVA Sheet/Glass scheme was fabricated. The optical transmittance of EVA Sheet at visible wavelength was enhanced 5% when compared to Glass/Glass scheme. And the transmittance of $130^{\circ}C$/4min, $110^{\circ}C$/4min, $160^{\circ}C$/6min process condition was higher at ultraviolet wavelength range. These curing conditions could be regarded as the best process for suppression the discoloration speed of EVA Sheet under UV light.

  • PDF

Strength Characteristic according to the Water Curing Temperature of the Inorganic Binder Mixed PVA Fiber (PVA섬유혼입 무기결합재의 수중양생온도에 따른 강도특성)

  • Lee, Jin-Woo;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.194-195
    • /
    • 2013
  • Recently, it is the tendency that the CO2 gas generated in the manufacturing process is increased every year in case of the portland cement used in the most of constructions and civil engineering field. The method that uses the mineral admixtures as the cement substitute material in order to be more serious and as much as it occupies 7% of the global CO2 gas outlet amount such as 1 ton produces the cement and it ejects the CO2 gas of 0.4~1.0 ton, etc conclude this problem is examined. Therefore, PVA fiber was mixed into the inorganic binder recycling the blast furnace slag, which is the industrial byproduct with the purpose studying the Geo polymer which doesn't use the cement at all silica fume, red mud, and etc. In addition, the water curing temperature was differentiated and the strength characteristic of the curing body tried to be examined.

  • PDF

A study on color characteristics of Multi-color functional Rapid Prototypes Using laser stereolithography (광조형을 이용한 다색 기능성 시작품의 색상특성에 관한 연구)

  • 조진구;정해도;손재혁;임용관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.824-828
    • /
    • 2000
  • As production cycle has become more and more shorter, the demand of rapid prototyping technology has increased largely. There are many methods for rapid prototyping technology, such as SLA. SLS, FDM. INK JET, LOM and so on. Of all methods, SLA has been most widely used for fabricating precision parts. But products manufactured by this method have limitation of single color and single material. So the principal purpose of this study is to overcome the limit of single color product. If the internal structure of manufactured product is visible with multi-color characteristic, it is possible to check easily the designed model with reality. In order to give multi-color characteristic to the product, photocurable resin mixed with pigment is used in this study. First, transparency of photocurable resin without pigment is evaluated, and then color characteristic and curing characteristic of the mixture is evaluated changing mixing ratio. Through the basic experiments, it becomes possible to fabricate multi-color 3D prototype without assembly.

  • PDF

Investigated properties of Low temperature curing Ag Paste for Silicon Hetero-junction Solar Cell

  • Oh, Donghyun;Jeon, Minhan;Kang, Jiwoon;Shim, Gyeongbae;Park, Cheolmin;Lee, Youngseok;Kim, Hyunhoo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.160-160
    • /
    • 2016
  • In this study, we applied the low temperature curing Ag paste to replace PVD System. The electrode formation of low temperature curing Ag paste for silicon Hetero-junction solar cells is important for improving device characteristics such as adhesion, contact resistance, fill factor and conversion efficiency. The low temperature curing Ag paste is composed various additives such as solvent, various organic materials, polymer, and binder. it depends on the curing temperature conditions. The adhesion of the low temperature curing Ag paste was decided by scratch test. The specific contact resistance was measured using the transmission line method. All of the Ag electrodes were experimented at various curing temperatures within the temperature range of $160^{\circ}C-240^{\circ}C$, at $20^{\circ}C$ intervals. The curing time was also changed by varying the conditions of 10-50min. In the optimum curing temperature $200^{\circ}C$ and for 20 min, the measured contact resistance is $19.61m{\Omega}cm^2$. Over temperature $240^{\circ}C$, confirmed bad contact characteristic. We obtained photovoltaic parameter of the industrial size such as Fill Factor (FF), current density (Jsc), open-circuit voltage (Voc) and convert efficiency of up to 76.2%, 38.1 mA/cm2, 646 mV and 18.3%, respectively.

  • PDF

The Experimental study on the compressive strength of UHPC according to curing method (양생방법에 따른 초고성능 콘크리트 압축강도 발현특성에 관한 실험적 연구)

  • Park, Jung-Jun;Kang, Su-Tae;Ryu, Gun-Sung;Koh, Gyung-Taek;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.235-236
    • /
    • 2009
  • In this Study, we examined the characteristic of compressive strength according to various curing methods in order to obtain higher strength of UHPC in th e range of 200MPa.

  • PDF

A Study of The Photosensitive Characteristic and Fabrication of Polyimide Thin Film by Dry Processing (건식법을 이용한 폴리이미드 박막의 제조 및 광특성)

  • Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.139-141
    • /
    • 2007
  • Thin films of polyimide (Pl) were fabricated by a vapor deposition polymerization method (VDPM) and studied for the photosensitive characteristic. Polyamic acid (PAA) thin films fabricated by vapor deposition polymerization (VDP) from 6FDA and 4-4' DDE were converted to PI thin films by thermal curing. From AFM and Ellipsometer experimental, the films thickness was decreased and the reflectance was increased as the curing temperature was increased. Those results implies that thin film is uniform. From UV-Vis spectra, PI thin films showed high absorbance in 225 $\sim$ 260 [nm] region.

A Study on Properties of UV-Curing Silver Paste for Touch Panel by Photoinitiator Characteristic (광개시제 특성에 따른 터치 패널용 UV 경화형 Ag 페이스트의 물성 연구)

  • Nam, Su-Yong;Koo, Yong-Hwan;Kim, Sung-Bin
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.2
    • /
    • pp.1-13
    • /
    • 2011
  • The recent spotlight on electronic touch-screen display, a rapid breakthrough in the information society is evolving. Touch panel input device such as a keyboard or mouse without the use of, the on-screen character or a specific location or object on the person's hand touches a particular feature to identify the location of a panel is to be handled. The touch screen on the touch panel is used in the Ag paste is used mostly for low-curable paste. The thermal-curing paste according to the drying process of thermal energy consumption and improve the working environment of organic solvents have problems. In this study, Ag paste used in the non-thermal curing friendly and cost-effective UV curable paste was prepared. Current commercially available thermal-curable binder, was used instead of the flow characteristics of UV-curable oligomers and monomers with functional groups to give a single conductive Ag paste with the addition of a pattern could be formed. Ag paste as a result, thermal-curing adhesive, hardness, resistance and excellent reproduction of fine patterns and was available with screen printing environmentally friendly could see its potential as a patterning technology.

New Hyperbranched Polyimides and Polyamides: Synthesis, Chain-End Functionalizations, Curing Studies, and Some Physical Properties (새로운 Hyperbranchedpolyimidesandpolyamides: 합성, 말단기 변형, 경화 연구, 그리고 물리적 성질)

  • Baek, Jong-Beom;Chris B. Lyon;Tan, Loon-Seng
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.1-2
    • /
    • 2003
  • While aromatic polyimides and polyamides have found widespread use as high performance polymers, the present work addressed the need for organosoluble materials through the use of a hyperbranching scheme. The $AB_2$ monomers were prepared. The $AB_2$ monomers were then polymerized via aromatic fluoride-displacement and Yamazaki reactions to afford the corresponding hydroxyl-terminated hyperbranched polyimides (HT-PAEKI) and amine-terminated hyperbranched polyamides, respectively. HT-FAEKI was then functionalized with allyl and propargyl bromides as well as epichlorohydrin to afford allyl-terminated AT-PAEKI, propargyl-terminated PT-PAEKI, and epoxy (glycidyl)-terminated ET-PAEKI, in that order. All hyperbranched poly(ether-ketone-imide)s were soluble in common organic solvents. AT-PAEKI was blended with a bisphenol-A-based bismaleimide (BFA-BMI) in various weight ratios. Thermal, rheological, and mechanical properties of these blend systems were evaluated. Two characteristic hyperbranched polyamides, which the one has para-electron donating groups to the surface amine groups and the other has para-electron withdrawing groups to the surface amine groups, were selected to compare BMI curing behaviors. The electron rich polymer displayed ordinary Michael addition type exothermic reaction, while electron deficient polymer did display unusual curing behaviors. Based on analytical data, the later system provided the strong evidences to support room temperature curing of BMI by reactive intermediates instead of reactive primary amine groups on the macromolecule surface.

  • PDF

MICROHARDNESS OF ESTHETIC RESTORATIVE MATERIALS CURED BY 3 TYPES OF NARROW-BANDED WAVELENGTH (중합가시광 파장대에 따른 심미성 수복재의 미세경도 변화)

  • 김현철;조경모;신동훈
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.127-133
    • /
    • 2001
  • There are several factors affecting the effectiveness of polymerization of the esthetic restorative materials. Among those factors, the initiator. camphoroquinone has the unique characteristic. of which the light sensitivity is very dependent on the wavelength of blue light. Camphoroquinone shows the most light absorption ability in the wavelength range of 470nm. So most of clinically used light curing systems adopt this phenomenon as their polymerization mechanism. The most popular way of light curing system is standard 40 second curing. But the problem of standard curing technique shows the rapid increase of resin viscosity followed by the acceleration of polymerization and the limited resin flow, resulted in reduction of the physicalproperty of restoration by retained stress. The object of this study was to verify the effects of narrow-banded wavelength on the microhardness of the esthetic restorative materials. a composite resin and a compomer, using filters which have peak wave length of 430nm, 450nm, 470nm, respectively. The results were as follows: 1. All the experimental groups showed lower hardness value than the control group. 2. In DyractAP, the hardness value by wavelength showed the same changing pattern on both upper and lower surfaces. 3. In DenFil, the hardness value by wavelength showed different changing pattern on upper and lower surfaces. 4. The hardness ratio showed similar pattern to the hardness variation of lower surface. but there was no significant difference between measurement in 10 minutes and 3 days later, besides the increase of hardness value.

  • PDF

Characteristic of LED light curing unit and classification by generation for clinicians (임상가가 알아두면 유용한 LED 광중합기의 특성과 세대별 분류)

  • Shim, Young-Bo;Choi, An-Na;Park, Jeong-Kil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.4
    • /
    • pp.245-251
    • /
    • 2017
  • Since light curing composite resin was introduced in the 1960s, light curing process has been considered as an essential process. Herein, various light sources became available for the process. Quartz-tungsten-halogen (QTH) light curing units (LCUs) dominated the market until the 1990s, before the LED LCUs started replacing them in the 2000s. The LED, developed approximately 50 years ago, came into use in the dentistry field from the late 1990s, and the LED LCUs, with the 2000s. Since then, the LED LCUs have gone through many advancements to its current fourth generation. In accordance to such advancements of the LED light curing unit, the majority of light curing unit used today are LED LCUs. As much as its usage has increased, it is necessary that dental clinicians understand the characteristics of the device. The objective of this review report is to provide the history of the scientific development and describe the characteristics of the LED LCUs.