• 제목/요약/키워드: curing age

검색결과 424건 처리시간 0.025초

내한성 혼화제를 이용한 시멘트 모르타르의 초기양생 온도변화에 따른 강도증진 특성 (Properties of Strength Development Under Various Curing Condition at Early Age of Cement Mortar Using Agent for Enduring Cold Weather)

  • 한천구;홍상희;김현우
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.191-197
    • /
    • 2001
  • In this study, the admixtures for agents for enduring cold weather used widely are collected and applied to cement mortar to analyze the strength development due to variation of curing temperature at early age. The test results show that anti-freezing admixture have some problems due to high chloride content, which may cause the corrosion of reinforcement embedded in concrete. However, the mortar applied by accelerator and another kind of agent for enduring cold weather produced by S company lead to delay of strength development in low temperature. Also, it is clarified that there are no significant problems for cement mortar in strength development due to low temperature if a suitable kind of agent enduring cold weather is used and cement mortar is cured for more than $7.5^{\circ}D.D$ at early age.

  • PDF

초기 고온이력이 시멘트 모르터의 강도발현에 미치는 영향에 관한 연구 (An Experimental Study on the Characteristics of Compressive Strength in Cement Mortar under High Temperature conditions in an Early Age)

  • 김영주;최맹기;공민호;박희곤;김광기;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.45-48
    • /
    • 2005
  • This study is basic experiment for estimating influence of strength by curing temperature of concrete's heat of hydration and estimate relationship of compressive strength development by initial curing temperature factor, and then asume temperature factor which influence compressive strength development and for showing basic document of qualify control. According to the result of cement mortar by the curing temperature factor high-curing temperature shows high strength on 3 day compare with low curing-temperature, shows higher strength than the piece of high curing temperature.

  • PDF

양생 조건에 따른 콘크리트의 체적 변화 (Volumetric Change of Concrete Subjected to Different Curing Condition)

  • 이광명;이회근;이성진;백빈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.132-135
    • /
    • 2004
  • High-performance concrete (HPC) may be expected to differ from usual concrete with respect to shrinkage behavior, and it shows high autogenous shrinkage due to the use of very low water-binder ratio (w/b) and various admixtures. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structure, volumetric change of HPC should be understood. In this study, small prisms made of HPC with w/b of 0.32 and blast-furnace slag content of $0\%,\;30\%,\;and\;50\%$ were prepared to measure the volumetric changes such as autogenous shrinkage, drying shrinkage, and swelling under three different curing conditions. It was observed that the concrete cured. sealed condition showed only autogenous shrinkage while the concrete let to dry condition at temperature of $20^{\circ}C$ and relative humidity of $60\%$ during the test period showed both autogenous and drying shrinkage. Moreover, the concrete exposed to dry condition after 2-day water curing swelled and then started to shrink with age. The total shrinkage (autogenous+drying) of this concrete was smaller than that of the concrete cured dry condition, especially at early-age. Therefore, the early-age moisture curing is very effective to control or minimize the volumetric change and its induced stress of HPC.

  • PDF

압축강도 및 양생조건에 따른 초고성능 콘크리트의 직접인장강도 특성 (Effect of Compressive Strength and Curing Condition on the Direct Tensile Strength Properties of Ultra High Performance Concrete)

  • 박지웅;이건철
    • 한국건축시공학회지
    • /
    • 제17권2호
    • /
    • pp.175-181
    • /
    • 2017
  • 본 연구는 초고강도 섬유보강 콘크리트의 인장강도 특성을 파악하기 위한 일환의 연구로서 직접인장시험에 의한 노치가 도입된 시험체의 인장성능을 파악하기 위하여 시험변수는 목표 설계기준강도 120, 150 및 180MPa를 대상으로 하였으며, 양생조건을 일반 수중양생과 $90^{\circ}C$ 고온증기 양생조건으로 하여 그 특성을 검토하였다. 전반적으로 노치타입의 직접인장강도 시험체는 기존 직접인장 시험체에 비해 중앙균열 유도가 효과적인 것으로 나타났으며 데이터를 직접 인장강도-변형률 그래프로 나타낸 결과 먼저 재령 측면에서는 28일에서 56일로 진행할 때의 강도 상승이 가장 높은 것으로 측정 되었으며, 양생조건 측면에서는 고온증기 양생의 경우 수중양생의 비해 초기 강도가 높으나 장기 재령에 가까워질수록 두 가지 양생조건의 직접인장강도 차이가 미비해지는 것을 알 수 있었다. 최대인장강도는 수중양생의 경우 모든 목표설계강도가 재령이 증가할수록 일정하게 증가하는 것으로 나타났으며, 증기양생의 경우 재령 7일에서 초기강도 발현 효과로 인해 상당히 증가하는 경향을 나타내었다. 초기균열 강도는 수중양생의 경우 재령경과에 따라 증가하며, 증기양생의 경우 7일에서 수중양생에 비해 높은 것으로 나타난 반면에 28일 강도는 저하하는 경향을 나타내었다. 이부분에 대해서는 강섬유의 배열상태 등의 검토가 필요할 것으로 사료된다.

An Integrated System to Predict Early-Age Properties and Durability Performance of Concrete Structures

  • 왕소용;이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.465-466
    • /
    • 2010
  • In this paper, an integrated system is proposed which can evaluate both the early-age properties and durability performance of concrete structures. This integrated system starts with a hydration model which considers both Portland cement hydration and chemical reactions of supplementary cementing materials (SCM). Based on the degree of hydration of cement and mineral admixtures, the amount of reaction products, the early age heat evolution, chemically bound water, porosity, the early age short-term mechanical behaviors, shrinkage and early-age creep are evaluated as a function of curing age and curing conditions. Furthermore, the durability aspect, such as carbonation of blended concrete and chloride attack, are evaluated considering both the material properties and surrounding environments. The prediction results are verified through experimental results.

  • PDF

알카리-실리카 반응(反應)에 의한 인공경량골재(人工輕量骨材)콘크리트의 공학적(工學的) 성질(性質) (Engineering Properties of Synthetic Lightweight Aggregate Concrete Affected by Alkali-Silica Reaction)

  • 성찬용
    • 농업과학연구
    • /
    • 제18권1호
    • /
    • pp.33-40
    • /
    • 1991
  • 이 논문(論文)은 알카리 실리카 반응(反應)에 의한 인공경량골재콘크리트의 공학적(工學的) 성질(性質)에 관한 연구로서, 연구에 의하여 얻어진 결과(結果)를 요약(要約)하면 다음과 같다. 1. Type A 콘크리트는 재령이 증가함에 따라 압축강도가 증가하였고, type B와 C 콘크리트는 재령 28일(日)에서 최대 압축강도를 보였으나, 재령이 증가함에 따라 감소하였다. 2. Type A 콘크리트는 재령이 증가함에 따라 휨강도도 증가하였으나, type B와 C 콘크리트는 재령 14일(日)에서 최대강도를 보였으며, 그 이후부터 재령이 증가함에 따라 감소하였다. 3. 압축강도와 휨강도와의 상관관계(相關關係)는 type A 콘크리트는 유의성(有意性)을 인정할 수 있었으나, type B와 C 콘크리트는 유의성(有意性)을 인정할 수 없었다. 4. Type A, B 및 C 콘크리트의 흡수율은 재령이 증가함에 따라 다같이 증가하였고, type A 콘크리트에 비(比)하여 type B와 C 콘크리트는 7.0-7.8배(倍)로 나타났으며, 흡수율은 모두 수침초기(水浸初期)에 높게 나타났다. 5. 압축강도와 흡수율과의 상관관계(相關關係)는 type A 콘크리트는 유의성(有意性)을 인정할 수 있었으나, type B와 C 콘크리트는 유의성(有意性)을 인정할 수 없었다.

  • PDF

EFFECT OF HEAT CURING METHODS ON THE TEMPERATURE HISTORY AND STRENGTH DEVELOPMENT OF SLAB CONCRETE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Lee, Gun-Che;Han, Min-Cheol;Baek, Dae-Hyun;Koh, Kyung-Taek
    • Nuclear Engineering and Technology
    • /
    • 제44권5호
    • /
    • pp.523-534
    • /
    • 2012
  • The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to $-10^{\circ}C$. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of $1200{\times}600{\times}200$ mm and a design strength of 27 MPa were fabricated and cured at $-10^{\circ}C$ for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below $0^{\circ}C$ within 40 h after exposure to $-10^{\circ}C$, and then, the temperature dropped to $-10^{\circ}C$ and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around $5^{\circ}C$ for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around $10^{\circ}C$ for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after just 3 d. In the case of strength development, the heat insulation materials alone were insufficient to achieve the minimum 7-d strength required to prevent early-age frost damage. However, the combination of a heating cable and heat insulating materials met both the minimum 7-d strength and the 28-d design strength owing to the heat supply and thermal resistance. Therefore, it is believed that by combining a heating cable and 4-BS, concrete exposed to $-10^{\circ}C$ can be effectively protected from early-age frost damage and can attain the required 28-d compressive strength.

Effect of Steam Curing on Concrete Piles with Silica Fume

  • Yazdani, N.;F. Asce, M. Filsaime;Manzur, T.
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권1호
    • /
    • pp.9-15
    • /
    • 2010
  • Silica fume is a common addition to high performance concrete mix designs. The use of silica fume in concrete leads to increased water demand. For this reason, Florida Department of Transportation (FDOT) allows only a 72-hour continuous moist cure process for concrete containing silica fume. Accelerated curing has been shown to be effective in producing high-performance characteristics at early ages in silica-fume concrete. However, the heat greatly increases the moisture loss from exposed surfaces, which may cause shrinkage problems. An experimental study was undertaken to determine the feasibility of steam curing of FDOT concrete with silica fume in order to reduce precast turnaround time. Various steam curing durations were utilized with full-scale precast prestressed pile specimens. The concrete compressive strength and shrinkage were determined for various durations of steam curing. Results indicate that steam cured silica fume concrete met all FDOT requirements for the 12, 18 and 24 hours of curing periods. No shrinkage cracking was observed in any samples up to one year age. It was recommended that FDOT allow the 12 hour steam curing for concrete with silica fume.

The effect of combined carbonation and steam curing on the microstructural evolution and mechanical properties of Portland cement concrete

  • Kim, Seonhyeok;Amr, Issam T.;Fadhel, Bandar A.;Bamagain, Rami A.;Hunaidy, Ali S.;Park, Solmoi;Seo, Joonho;Lee, H.K.
    • Advances in concrete construction
    • /
    • 제11권5호
    • /
    • pp.367-374
    • /
    • 2021
  • The present study investigated the effect of the combined carbonation and steam curing on the physicochemical properties and CO2 uptake of the Portland cement concrete. Four different curing regimes were adopted during the initial 10 h of curing to evaluate the potential of carbonation curing as an alternative to conventional steam curing in the precast concrete industry from environmental and practical viewpoints. Four combinations of carbonation and steam curing conditions were applied as curing regimes to the samples at an early age. The test results indicated that the samples treated with the combined carbonation and steam curing exhibited higher early strength development compared to the other samples, signifying that carbonation curing can reduce the production time of precast concrete. Furthermore, the CO2 uptake capacity of the samples was calculated and found to be as high as 18% with respect to the mass of the paste samples. Hence, the simultaneous utilization of steam and CO2 for the fabrication of precast concrete members has the potential to make precast concrete greener and more cost-effective.

동해방지를 위한 초기재령 콘크리트의 최소 양생 시간 예측 (Minimum Curing Time Prediction of Early Age Concrete to Prevent Frost Damage)

  • 배수원;이성태;김진근
    • 콘크리트학회논문집
    • /
    • 제19권1호
    • /
    • pp.27-37
    • /
    • 2007
  • 이 연구의 목적은 초기재령 콘크리트가 동해를 입을 경우가 예상될 때, 동해저항성을 확보하는데 필요한 최소 양생 시간의 예측법을 제안하는 것이다. 먼저, 실험을 통하여 동해시점이 지연될수록, w/c가 낮을수록, 그리고 1종 시멘트보다 3종 시멘트를 사용한 콘크리트가 동해에 의한 압축강도 감소율이 낮으며 동해는 얼음결정의 형성과 성장을 통해 발생됨을 확인하였다. 초기재령 콘크리트가 동해를 입었을 경우, 콘크리트 내에 존재하는 모세공극의 자유수가 얼음으로 상변화를 일으키면서 압축강도의 감소를 유발하므로 동해저항성은 모세공극의 포화도에 따라 결정된다. 따라서, 모세공극의 임계포화도 개념을 근거로 초기동해의 방지를 위한 최소양생시간의 예측법을 제안하였다.