• Title/Summary/Keyword: curbs

Search Result 28, Processing Time 0.025 seconds

Curb Detection and Following in Various Environments by Adjusting Tilt Angle of a Laser Scanner (레이저 스캐너의 틸트 각도 조절을 통한 다양한 환경에서의 연석 탐지 및 추종)

  • Lee, Dong-Wook;Lee, Yong-Ju;Song, Jae-Bok;Baek, Joo-Hyun;Ryu, Jae-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1068-1073
    • /
    • 2010
  • When a robot navigates in an outdoor environment, a curb or a sidewalk separated from the road can be used as a robust feature. However, most algorithms could detect the curb only in the straight road, and could not detect highly curved corners, ramps, and so on. This paper proposes an algorithm which enables the robot to detect and follow the curbs in various types of roads. In the proposed method, the robot tilts a laser scanner and computes the error between the predicted and the measured distances to the road in front of the robot. Based on this error, the curbs at corners and curves can be classified. It is also difficult to detect a curb near a ramp because of its low height. In this case, the robot also tilts a laser scanner to detect the curb beyond the ramp. Once the robot classifies the road into the curve, corner, ramp, the robot selects the proper navigation strategies depending on the classified road types and is able to continue to detect and follow the curb. The results of a series of experiments show that the robot can stably detect and follows the curb in curves, corners and ramps as well as the straight road.

Development of Autonomous Navigation Robot in Outdoor Road Environments (실외 도로 환경에서의 자율주행 로봇 개발)

  • Roh, Chi-Won;Kang, Yeon-Sik;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.293-299
    • /
    • 2009
  • This paper discusses an autonomous navigation system for urban environments. For the localization of the robot, EKF (Extended Kalman Filter) algorithm is used with odometry, angle sensor, and DGPS (Differential Global Positioning System) measurement. Especially in an urban environment, DGPS is often blocked by buildings and trees and the resulting inaccurate positioning prevents the robot from safe and reliable navigation. In addition to the global information from DGPS, the local information of the curb on the roadway is used to track a route when the global DGPS information is inaccurate. For this purpose, curb detection algorithm is developed and implemented in the developed navigation algorithm. Four different types of navigation strategies are developed and they are switched to adapt to different localization conditions according to the availability of DGPS and the existence of the curbs on the roadway. The experimental results show that the designed switching strategy improves the navigation performance adapting to the environment conditions.

H2 Control of Wheel Chair Robot with Inverse Pendulum Control

  • Takakazu, Ishimatsu;Chan, Tony
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.89.2-89
    • /
    • 2001
  • Wheel chair bound persons need assistance since there are many steps or curbs or other obstacles blocking their path in the roadways and walkways. Although a step may be small, it may be very difficult for such a person to climb over it. Therefore, we are proposing a power assist wheel chair robot that enables a wheel chair bound person to climb over steps up to about 10 centimeters in height without assistance from others. By using the proposed wheel chair robot, a user can maintain inverse pendulum control after raising its front wheels Then, a user can move forward to the step maintaining the inverse pendulum control, and can climb over the step using motor force of a rear wheel shaft ...

  • PDF

LiDAR Measurement Analysis in Range Domain

  • Sooyong Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.187-195
    • /
    • 2024
  • Light detection and ranging (LiDAR), a widely used sensor in mobile robots and autonomous vehicles, has its most important function as measuring the range of objects in three-dimensional space and generating point clouds. These point clouds consist of the coordinates of each reflection point and can be used for various tasks, such as obstacle detection and environment recognition. However, several processing steps are required, such as three-dimensional modeling, mesh generation, and rendering. Efficient data processing is crucial because LiDAR provides a large number of real-time measurements with high sampling frequencies. Despite the rapid development of controller computational power, simplifying the computational algorithm is still necessary. This paper presents a method for estimating the presence of curbs, humps, and ground tilt using range measurements from a single horizontal or vertical scan instead of point clouds. These features can be obtained by data segmentation based on linearization. The effectiveness of the proposed algorithm was verified by experiments in various environments.

Experimental Study on the Determination of Slope and Height of Curbs Considering the VRUs (교통약자를 고려한 보도의 경사도와 높이 결정을 위한 실험연구)

  • Kim, Hyunjin;Lim, Joonbeom;Choe, Byongho;Oh, Cheol;Kang, Inhyeng
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.107-115
    • /
    • 2018
  • PURPOSES : As the population of the mobility handicapped, who are classified as the disabled, the elderly, pregnant women, children, etc., has increased, the voices for guaranteeing their rights have been increasing as well. Thus, the design manuals for roads and sidewalks for the mobility handicapped were developed by the local government, such as the Ministry of Land, Transport, and Tourism, in Seoul City. However, according to the 2013 survey results of the Seoul Metropolitan City, the mobility handicapped still feel uncomfortable with the sidewalks, and particularly request for the improvement of the step and slope of the sidewalk curb. Therefore, in this study, we conducted an empirical experimental study to determine the slope of the sidewalk curb and height of the steps considering the mobility handicapped and analyzed whether there is a statistically significant difference. METHODS : The methodology of this study is an empirical experimental one. In the study, five non-disabled people, 10 wheelchair users, and 10 eye patch and stick users walked about 2-3 min on the sidewalk plates of the sloped type (0%, 5%, 6.3%, 8.3%) and stepped type (0 cm, 1 cm, 3 cm, 6 cm), and their human physiological responses, such as the skin temperature, volume of perspiration on forehead and chest, and heart rate, were measured and recorded. After combining the data, we conducted a nonparametric test, ANOVA, or t-test to determine whether there was a statistically significant difference according to each slope and step type. RESULTS : It was found that for the non-disabled, there was no significant difference in human physiological responses according to the slope and steps of the sidewalk. It can be said that the non-disabled do not feel much physiological discomfort while walking. In the case of the sloped sidewalk plate, the heart rate of the wheel chair users increased when the slope was 6.3%. In the case of the eye patch and stick users, the volume of perspiration on the chest increased at a slope of 5.0%. In general, it is judged that a sidewalk with a slope that is less than 5% does not cause a change in the physiological response. In the case of a stepped sidewalk plate, when 0 cm, 1 cm, and 3 cm were compared for wheelchair users, the amount of forehead perspiration increased from 1 cm. Meanwhile, in the case of the eye patch and stick users, when 0 cm and 6 cm were compared, the amount of perspiration on the forehead and chest as well as the heart rate all increased at 6 cm. Taken together, in the case of wheelchair users, a difference was shown when the height of the step of the sidewalk plate was 1 cm, suggesting that installing it at 0 cm does not cause any physiological discomfort. Moreover, in the case of the eye patch and stick users, when comparing only 0 cm and 6 cm, 0 cm was considered to be suitable, as there was a difference in physiological response at 6 cm. CONCLUSIONS : In this study, we set the human physiological responses such as chest skin temperature, amount of perspiration, and heart rate as evaluation items, and our study was considered to be a meaningful experiment that targeted wheelchair users as well as eye patch and stick users. The validity of the evaluation items was confirmed, as the results of human physiological responses were significant. As for the sidewalk design, according to the experiment result, it is considered that differential application should be implemented according to the type of mobility handicap, rather than uniformly applying a sidewalk step of 2 cm and sidewalk slope of 1/25, which are the current legal standards.

An innovative experimental method to upgrade performance of external weak RC joints using fused steel prop plus sheets

  • Kheyroddin, Ali;Khalili, Ali;Emami, Ebrahim;Sharbatdar, Mohammad K.
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.443-460
    • /
    • 2016
  • In this paper, the efficiency and effectiveness of two strengthening methods for upgrading behavior of the two external weak reinforced concrete (RC) beam-column joints were experimentally investigated under cyclic loading. Since two deficient external RC joints with reduced beam height and low strength concrete were strengthened using one-way steel prop and curbs with and without steel revival sheets on the beam. The cyclic performance of these strengthened specimens were compared with two another control external RC beam-column joints, one the standard RC joint that had not two mentioned deficiencies and another had both. Therefore, four half-scale RC joints were tested under cyclic loading.The experimental results showed that these innovative strengthening methods (RC joint with revival sheet specially) surmounted the deficiencies of weak RC joints and upgraded their performance and bearing capacity, stiffness degradation, energy absorption, up to those of standard RC joint. Also, results exhibited that the prop at joint acted as a fuse element due to adding steel revival sheets on the RC beam and showed better behavior than that of the specimen without steel revival sheets. In other words by stiffening of beam, the prop collected all damages due to cyclic loading at itself and acted as the first line of defense and prevented from sever damages at RC joint.

An Experimental Study on the Transient Behavior of Vehicle Rollover (차량 롤전복의 과도거동에 관한 시험적 연구)

  • Lee, Myung-Su;Kim, Sang-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.113-121
    • /
    • 2011
  • Rollover accident is one of the serious traffic accident and rollover accident takes high portion of all accident. The most common type of rollover is a tripped rollover which occupy 95% of all type of single-vehicle rollover. Tripped rollover occurs when a vehicle leaves normal road way and tripped by loose gravel, soil of fixed object such as guard rail, curbs and ditches. And the rest of the type of rollover is un-tripped rollover. An un-tripped rollovers that occurs during high-speed collision avoidance maneuvers. In this paper, presents the explanation of the un-tripped rollover test method and procedure, additionally this paper deals with various occurrence in the un-tripped test such as occurring excessive tire camber in the un-tripped test, tire side-wall contact with road surface and roll oscillation. And this paper analyzes the analysis of the roll rate amplitude in specific frequency through the FFT (Fast Fourier Transform) and the roll angle at the steering reverse timing which is the Fishhook test roll rate feedback time. Finally, this paper analyzes the relations between the estimated steady state roll gain and rollover stability.

A Study on Localization Methods for Autonomous Vehicle based on Particle Filter Using 2D Laser Sensor Measurements and Road Features (2D 레이저센서와 도로정보를 이용한 Particle Filter 기반 자율주행 차량 위치추정기법 개발)

  • Ahn, Kyung-Jae;Lee, Taekgyu;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.803-810
    • /
    • 2016
  • This paper presents a study of localization methods based on particle filter using 2D laser sensor measurements and road feature map information, for autonomous vehicles. In order to navigate in an urban environment, an autonomous vehicle should be able to estimate the location of the ego-vehicle with reasonable accuracy. In this study, road features such as curbs and road markings are detected to construct a grid-based feature map using 2D laser range finder measurements. Then, we describe a particle filter-based method for accurate positional estimation of the autonomous vehicle in real-time. Finally, the performance of the proposed method is verified through real road driving experiments, in comparison with accurate DGPS data as a reference.

Durability and mechanical performance in activated hwangtoh-based composite for NOx reduction

  • Kim, Hyeok-Jung;Park, Jang-Hyun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.307-314
    • /
    • 2021
  • Activated hwangtoh (ACT) is a natural resource abundant in South Korea, approximately 15.0% of soil. It is an efficient mineral admixture that has activated pozzolanic properties through high-temperature heating and rapid cooling. The purpose of this study is to improve a curb mixture that can reduce NOx outside and investigate durability performance. To this end, mortar curb specimens were manufactured by replacing OPC with ACT. The ACT substitution ratios of 0.0, 10.0, and 25.0% were considered, and mechanical and durability tests on the curb specimens were conducted at 28 and 91 days of age. Steam curing was carried out for three days for the production of curbs, which was very effective to strength development at early ages. The reduction in strength at early ages could be compensated through this process, and no significant performance degradation was evaluated in the tests on chloride attack, carbonation, and freezing and thawing. The mortar curb with an ACT of 10.0~25.0% replacement ratio exhibited clear NOx reduction through photocatalytic (TiO2) treatment. This is due to the increase in physical absorption through surface absorption and the photocatalyst-containing TiO2 coating. In this study, the reasonable range of the ACT replacement ratio for NOx reduction was quantitatively evaluated through a comprehensive analysis of each test.

A Novel Approach to Enhance Dual-Energy X-Ray Images Using Region of Interest and Discrete Wavelet Transform

  • Ullah, Burhan;Khan, Aurangzeb;Fahad, Muhammad;Alam, Mahmood;Noor, Allah;Saleem, Umar;Kamran, Muhammad
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.319-331
    • /
    • 2022
  • The capability to examine an X-ray image is so far a challenging task. In this work, we suggest a practical and novel algorithm based on image fusion to inspect the issues such as background noise, blurriness, or sharpness, which curbs the quality of dual-energy X-ray images. The current technology exercised for the examination of bags and baggage is "X-ray"; however, the results of the incumbent technology used show blurred and low contrast level images. This paper aims to improve the quality of X-ray images for a clearer vision of illegitimate or volatile substances. A dataset of 40 images was taken for the experiment, but for clarity, the results of only 13 images have been shown. The results were evaluated using MSE and PSNR metrics, where the average PSNR value of the proposed system compared to single X-ray images was increased by 19.3%, and the MSE value decreased by 17.3%. The results show that the proposed framework will help discern threats and the entire scanning process.