• Title/Summary/Keyword: cumulative rainfall

Search Result 133, Processing Time 0.026 seconds

Characteristics of Non-point Pollution Discharge on Stormwater Runoff from Lake Doam Watershed (도암호 유역의 강우시 비점오염물질 유출 특성)

  • Kwak, Sung-Jin;Bhattrai, Bal Dev;Kim, Eun-Jung;Lee, Chang-Keun;Lee, Hyeong-Jin;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.62-71
    • /
    • 2012
  • Lake Doam watershed was surveyed to evaluate non-point source discharge characteristics and discharge load including several water quality parameters in Song Stream from July 2009 to July 2011. Concentrations of water pollutants were high during the rainfall period, especially, SS, TP and COD showed increasing tendencies toward cumulative water discharge but TN did not show much difference. SS, TP and COD had an initial flush effect of over 50 mm rainfall event but there was no clear tendency for rainfalls below that level. Event mean concentration (EMC) regarding the rainy and dry period showed large differences. Especially rainy season EMC (SS, TP, COD) demonstrated an increasingly high tendency. EMCs of COD, SS, TN and TP measured for twelve rain events were as high as 26.1, 866.0, 4.68 and 0.605 mg $L^{-1}$, respectively. COD, SS, TN and TP loadings from the highland agricultural region of the Song Stream watershed were 34,263, 1,250,254, 2,673 and 933 kg $yr^{-1}\;km^{-2}$, respectively, which were relatively higher than the results of other stream systems. Therefore, it is strongly recommended that long-term monitoring and non-point pollution reduction programs for the highland agricultural area to continue. Furthermore, this non-point source pollution loading research acquired from the highland agricultural area could be the base for reassessment.

Determination of First Flush Criteria in Highway Stormwater Runoff using Dynamic EMCs (동적 EMC를 이용한 고속도로 초기우수 처리 기준 산정)

  • Kim, Lee-Hyung;Lee, Eun-Ju;Ko, Seok-Oh;Kim, Sung-Gil;Lee, Byung-Sik;Lee, Joo-Kwang;Kang, Hee-Man
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.294-299
    • /
    • 2006
  • The Ministry of Environment in Korea has introduced Total Pollution Load Management System (TPLMS) in major 4 large rivers to protect the water quality from possible pollutants. In order to successfully achieve the TPLMS, the nonpoint source should be controled by applying the best management practices in highly polluted areas. Of the various nonpoint sources, the highways are stormwater intensive landuses because of its high imperviousness and high pollutant mass emissions. The EMC (Event Mean Concentration) is an important parameter to correctly determine the pollutant mass loadings from nonpoint sources. However, it has wide ranges because of various reasons such as first flush phenomenon, rainfall and watershed characteristics. Even though the EMC is closely related to the first flush phenomenon, the relationship have not proven until present. Therefore, in this paper, the dynamic EMC method will be introduced to clearly make the relationship between EMC and first flush phenomenon. Also by applying the dynamic EMC method to monitored data, we found that the highly concentrated stormwater runoff was washed off within 20~50 minutes storm duration. The first flush criteria for economical treatment was also determined to 5~10 mm (mean=7.4 mm) as a cumulative rainfall.

Analysis of First Flush of Recreation Park and Removal Rate According to Rainfall-Runoff Storage Depth (위락시설지역의 초기세척현상과 초기 강우-유출고 저류에 따른 저감효율 분석)

  • Jung, Jae-Woon;Park, Ha-Na;Choi, Dong-Ho;Baek, Sang-Soo;Yoon, Kwang-Sik;Baek, Won-Jin;Beam, Jin-A;Lim, Byung-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.648-655
    • /
    • 2013
  • Nonpoint source pollution characteristics of recreation park was investigated. Runoff ratio of recreation park ranged 23-57%, which was lower than other urban area since impervious area was less than 37%. The average BOD, COD, TOC, SS, T-N, T-P, were 14.09, 32.86, 12.19, 121.51, 7.78 and 0.72 mg/L, respectively. First flush of recreation park was analyzed by normalized cumulative load - volume curve and mass first flush ratio(MFFn), MFF10 for BOD, COD, SS, T-P, T-N, TOC were 2.90, 1.59, 2.15, 2.74, 2.60, and 1.59, respectively. Observed data showed that 62% of pollutant could be removed by storaging 5 mm rainfall-runoff and even 3 mm depth could store up to 50% of pollutant in runoff.

Analysis of Rainfall-Runoff Characteristics on Bias Correction Method of Climate Change Scenarios (기후변화 시나리오 편의보정 기법에 따른 강우-유출 특성 분석)

  • Kum, Donghyuk;Park, Younsik;Jung, Young Hun;Shin, Min Hwan;Ryu, Jichul;Park, Ji Hyung;Yang, Jae E;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.241-252
    • /
    • 2015
  • Runoff behaviors by five bias correction methods were analyzed, which were Change Factor methods using past observed and estimated data by the estimation scenario with average annual calibration factor (CF_Y) or with average monthly calibration factor (CF_M), Quantile Mapping methods using past observed and estimated data considering cumulative distribution function for entire estimated data period (QM_E) or for dry and rainy season (QM_P), and Integrated method of CF_M+QM_E(CQ). The peak flow by CF_M and QM_P were twice as large as the measured peak flow, it was concluded that QM_P method has large uncertainty in monthly runoff estimation since the maximum precipitation by QM_P provided much difference to the other methods. The CQ method provided the precipitation amount, distribution, and frequency of the smallest differences to the observed data, compared to the other four methods. And the CQ method provided the rainfall-runoff behavior corresponding to the carbon dioxide emission scenario of SRES A1B. Climate change scenario with bias correction still contained uncertainty in accurate climate data generation. Therefore it is required to consider the trend of observed precipitation and the characteristics of bias correction methods so that the generated precipitation can be used properly in water resource management plan establishment.

Washoff Characteristics of Non-point Source pollutants and Estimation of Unit Loads in Suburban Industrial Complex Areas Runoff (교외 산업단지지역 강우유출수내 비점오염물질의 유출특성 및 원단위 산정)

  • Kim, Sung-Joon;Shin, Seon-Mi;Jeon, Yong-Tae;Won, Chan-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.2
    • /
    • pp.315-325
    • /
    • 2012
  • The characteristics of stormwater runoff and estimation of unit loads were examined in suburban industrial complex areas. During rainfall event, the peak concentrations occurred within the first 100 minutes after rainfall and then the highest concentration of NPS pollutants sharply decreased, showing strong first flush effect in suburban industrial complex. The cumulative load curves for NPS pollutants showed above the straight line, indicating that first flush effect occurred in suburban industrial complex. While the mean TSS, BOD, COD, TN and TP EMCs values were shown the highest values as 120.6 mg/L, 20.8 mg/L, 44.0 mg/L, 5.58 mg/L and 1.46 mg/L respectively. Unit loads estimated from the EMCs were TSS $43.86kg/km^2/day$, COD $52.45kg/km^2/day$, BOD $24.79kg/km^2/day$, T-N $6.65kg/km^2/day$, T-P $1.75kg/km^2/day$, and Pb $0.10kg/km^2/day$. Results of unit loads were compared with the unit pollutant loads from land-use in Korea and USA. The unit load of TSS was lower than that of USA. Estimated BOD and T-N and T-P unit loads were lower than that of Korea.

An Experimental Study on the Analysis of Infiltration Capacity of the Permeable Block (투수성 보도블록의 침투능 분석에 관한 실험적 연구)

  • Lee, Hoon;Jung, Do-Joon;Kim, Young-Bok;Kim, Yun-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.99-106
    • /
    • 2009
  • This research was to estimate quantitative infiltration volume of permeable block which is one of runoff reduction infiltration facilities. In this research, the permeable block experiments estimating infiltration volume for 50, 100, 150, 200 mm/hr rainfall intensity were carried out and hydraulic experiments results were compared with numerical simulation output to produce feasibility of numerical simulation. Final infiltration capacity analysis of permeable block hydraulic experiments reveals that every estimated infiltration volume before runoff beginning was above approximately 300.0 l despite rapid reduction of infiltration ratio and runoff initiation time were occurred in every rainfall intensity. Statistical calculation for coefficient of determination based on cumulative infiltration volume of hydraulic experiment and numerical simulation resulted in a high correlationship as $0.958{\sim}0.996$.

Analysis of area-based optimal capacity design method in vegetation type LID (식생형 LID 시설에서 면적 기반의 적정 용량 설계 방법 연구)

  • Park, Seowon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Recently, it has been reported that water pollution due to non-point pollutants continues. Studies have been actively carried out to prevent such non-point pollutants from flowing into the water system and to prevent water pollution. In this study, to evaluate the adequate design of the LID facilities the rainfall corresponding to 80% of the cumulative rainfall of Yongin city was applied to an SA / CA graph obtained from the analysis of monitoring results of the vegetation type LID facility. As a result, the appropriate SA/CA ratio was 0.6% for stormwater sustain efficiency 80% and the appropriate SA/CA ratio was 0.5% for TSS removal efficiency 80%. The appropriate SA/CA ratio of the vegetation type LID proposed in this study can be used as a basis. for the future vegetation type LID design. If more data of vegetation type LID are added through continuous research, it will be more accurate.

Derived I-D-F Curve in Seoul Using Bivariate Precipitation Frequency Analysis (이변량 강우 빈도해석을 이용한 서울지역 I-D-F 곡선 유도)

  • Kwon, Young-Moon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.155-162
    • /
    • 2009
  • Univariate frequency analyses are widely used in practical hydrologic design. However, a storm event is usually characterized by amount, intensity, and duration of the storm. To fully understand these characteristics and to use them appropriately in hydrologic design, a multivariate statistical approach is necessary. This study applied a Gumbel mixed model to a bivariate storm frequency analysis using hourly rainfall data collected for 46 years at the Seoul rainfall gauge station in Korea. This study estimated bivariate return periods of a storm such as joint return periods and conditional return periods based on the estimation of joint cumulative distribution functions of storm characteristics. These information on statistical behaviors of a storm can be of great usefulness in the analysis and assessment of the risk associated with hydrologic design problems.

Regional Drought Frequency Analysis of Monthly Precipitation with L-Moments Method in Nakdong River Basin (L-Moments법에 의한 낙동강유역 월강우량의 지역가뭄빈도해석)

  • 김성원
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.431-441
    • /
    • 1999
  • In this study, the regional frequency analysis is used to determine each subbasin drought frequency with reliable monthly precipitation and the L-Moments method which is almost unbiased and has very nearly a normal distribution is used for the parameter estimation of monthly precipitation time series in Nakdong river basin. As the result of this study, the duration of '93-'94 is most severe drought year than any other water year and the drought frequency is established as compared the regional frequency analysis result of cumulative precipitation of 12th duration months in each subbasin with that of 12th duration months in the major drought duration. The Linear regression equation is induced according to linear regression analysis of drought frequency between Nakdong total basin and each subbasin of the same drought duration. Therefore, as the foundation of this study, it can be applied proposed method and procedure of this study to the water budget analysis considering safety standards for the design of impounding facilities large-scale river basin and for this purpose, above all, it is considered that expansion of reliable preciptation data is needed in watershed rainfall station.

  • PDF

Development of Infiltration Model Considering Temporal Variation of Soil Physical Properties Under Rainfalls (토양의 물리적 특성의 변화를 고려한 강우의 침투모형 개발)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.36-46
    • /
    • 1993
  • The purposes of this study are to develop three-layered Green-Ampt infiltration model considering temporal variation of physical properties of soil and to evaluate the model with field experiment on bare-tilled and soybean-growing soil plots under natural rainfalls. Infiltration tests were conducted on a sandy loam soil. The model has three-layered soil profile including a surface crust, a tilled layer, a subsoil and considers temporal variation of porosity, hydraulic conductivity, capillary pressure head on a tilled layer by natural rainfalls and canopy density variation of crop. Field measurement of porosity, average hydraulic conductivity and average capillary presure head on a tilled layer were conducted by soil sampler and air-entry permeameter at regular intervals-after tillage. It was found that temporal variation of porosity and average hydraulic conductivity might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity of a tilled soil. The model was calibrated by an optimization technique, Hooke and Jeeves method using hourly surface runoff data. With the calibrated parameters, the model was verified satisfactorily.

  • PDF