• Title/Summary/Keyword: cumulative rainfall

Search Result 134, Processing Time 0.025 seconds

An Application of Various Drought Indices for Major Drought Analysis in Korea (우리나라의 주요가뭄해석을 위한 각종 가뭄지수의 적용)

  • Lee, Jae-Joon;Lee, Chang-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.59-69
    • /
    • 2005
  • Drought is difficult to detect and monitor, but it is easy to interpret through the drought index. The Palmer Drought Severity Index(PDSI), which is most commonly used as one of drought indices, have been widely used, however, the index have limitation as operational tools and triggers for policy responses. Recently, a new index, the Standardized Precipitation Index(SPI), was developed to improve drought detection and monitoring capabilities. The SPI has an improvement over previous indices md has several characteristics including its simplicity and temporal flexibility that allow its application for water resources on all timescales. Keetch-Byram Dought Index(KBDI) was defined as a number representing the net effect of evapotranspiration and precipitation in producing cumulative moisture deficiency in deep duff or upper soil layer. The purpose of this study is to analyze drought in Korea by using PDSI, SPI and KBDI. The result of this study suggests standard drought index by comparing of estimated drought indices. The data are obtained from Korea Meteorological Administration 56 stations over 30 years in each of the 8 sub-basins covering the whole nation. It is found that the PDSI had the advantage to detect the stage of drought resulting from cumulative shortage of rainfall, while SPI and KBDI had the advantage to detect the stage of drought resulting from short-term shortage of rainfall.

A Study on Rainfall-Pattern Analysis for determination of Design flow in small watershed (소유역의 설계유량 산정을 위한 강우현상 분석에 관한 연구)

  • 박찬영;서병우
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.13-18
    • /
    • 1981
  • The rainfall pattern analysis on time distribution characteristics of rainfall rates in important in determination of design flow for hydraulic structures, particularly in urban area drainage network system design. The historical data from about 400 storm samples during 31 years in Seoul have been used to investigate the time distribution of 5-minute rainfall in the warm season. Time distribution relations have been deveolped for heavy stroms over 20mm in total rainfall and represented by relation percentage of total storm rainfall to percentage of total storm time and grouping the data according to the quartile in which rainfall was heaviest. And also time distribution presented in probability terms to provide quantitative information on inter-strom variability. The resulted time distribution relations are applicable to construction of rainfall hyetograph of design storm for determination of design flow hydrograph and identification of rainfall pattern at given watershed area. They can be used in conjuction with informations on spatstorm models for hydrologic applications. It was found that second-quartile storms occurred most frequently and fourth-quartile storms most infrequently. The time distribution characteristics resulted in this study have been presented in graphic forms such as time distribution curves with probability in cumulative percent of storm-time and precipitation, and selected histograms for first, second, third, and fourth quartile stroms.

  • PDF

A Study of Stability Analysis on Unsaturated Soil Slopes Considering Rainfall (강우를 고려한 불포화 토사사면의 안정해석 연구)

  • Kim, Khi-Woong;Kim, Bum-Joo;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.4
    • /
    • pp.9-18
    • /
    • 2008
  • Shallow slope failures in residual soil during periods of prolonged infiltration are common in Korea. This study examines an infinite slope analysis to estimate the influence of infiltration on surficial stability of slopes by the limit equilibrium method. Approximate method which is based on the Green-Ampt model have been considered to evaluate the likelihood of shallow slope failure which is induced by a particular rainfall event that accounts for the rainfall intensity and duration for various return periods. Pradel & Raad method which is devised to predict the depth of wetting front to decomposed granite soil slopes having measured soil-water characteristic curves. To compare the results with those obtained from the Pradel & Raad method, a series of numerical analysis using SEEP/W were carried out. It was found that the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of decomposed granite soils was found to be a proper analysis for shallow slope failures due to rainfall.

  • PDF

An Empirical Model for Forecasting Alternaria Leaf Spot in Apple (사과 점무늬낙엽병(斑點落葉病)예찰을 위한 한 경험적 모델)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Seung-Chul
    • Korean journal of applied entomology
    • /
    • v.25 no.4 s.69
    • /
    • pp.221-228
    • /
    • 1986
  • An empirical model to predict initial disease occurrence and subsequent progress of Alternaria leaf spot was constructed based on the modified degree day temperature and frequency of rainfall in three years field experiments. Climatic factors were analized 10-day bases, beginning April 20 to the end of August, and were used as variables for model construction. Cumulative degree portion (CDP) that is over $10^{\circ}C$ in the daily average temperature was used as a parameter to determine the relationship between temperature and initial disease occurrence. Around one hundred and sixty of CDP was needed to initiate disease incidence. This value was considered as temperature threshhold. After reaching 160 CDP, time of initial occurrence was determined by frequency of rainfall. At least four times of rainfall were necessary to be accumulated for initial occurrence of the disease after passing temperature threshhold. Disease progress after initial incidence generally followed the pattern of frequency of rainfall accumulated in those periods. Apparent infection rate (r) in the general differential equation dx/dt=xr(1-x) for individual epidemics when x is disease proportion and t is time, was a linear function of accumulation rate of rainfall frequency (Rc) and was able to be directly estimated based on the equation r=1.06Rc-0.11($R^2=0.993$). Disease severity (x) after t time could be predicted using exponential equation $[x/(1-x)]=[x_0/(1-x)]e^{(b_0+b_1R_c)t}$ derived from the differential equation, when $x_0$ is initial disease, $b_0\;and\;b_1$ are constants. There was a significant linear relationship between disease progress and cumulative number of air-borne conidia of Alternaria mali. When the cumulative number of air-borne conidia was used as an independent variable to predict disease severity, accuracy of prediction was poor with $R^2=0.3328$.

  • PDF

Prediction of Salinity Changes for Seawater Inflow and Rainfall Runoff in Yongwon Channel (해수유입과 강우유출 영향에 따른 용원수로의 염분도 변화 예측)

  • Choo, Min Ho;Kim, Young Do;Jeong, Weon Mu
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.3
    • /
    • pp.297-306
    • /
    • 2014
  • In this study, EFDC (Environmental Fluid Dynamics Code) model was used to simulate the salinity distribution for sea water inflow and rainfall runoff. The flowrate was given to the boundary conditions, which can be calculated by areal-specific flowrate method from the measured flowrate of the representative outfall. The boundary condition of the water elevation can be obtained from the hourly tidal elevation. The flowrate from the outfall can be calculated using the condition of the 245 mm raifall. The simulation results showed that at Sites 1~2 and the Mangsan island (Site 4) the salinity becomes 0 ppt after the rainfall. However, the salinity is 30 ppt when there is no rainfall. Time series of the salinity changes were compared with the measured data from January 1 to December 31, 2010 at the four sites (Site 2~5) of Yongwon channel. Lower salinities are shown at the inner sites of Yongwon channel (Site 1~4) and the sites of Songjeong river (Site 7~8). The intensive investigation near the Mangsan island showed that the changes of salinity were 21.9~28.8 ppt after the rainfall of 17 mm and those of the salinity were 2.33~8.05 ppt after the cumulative rainfall of 160.5 mm. This means that the sea water circulation is blocked in Yongwon channel, and the salinity becomes lower rapidly after the heavy rain.

Temporal distritution analysis of design rainfall by significance test of regression coefficients (회귀계수의 유의성 검정방법에 따른 설계강우량 시간분포 분석)

  • Park, Jin Heea;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.257-266
    • /
    • 2022
  • Inundation damage is increasing every year due to localized heavy rain and an increase of rainfall exceeding the design frequency. Accordingly, the importance of hydraulic structures for flood control and defense is also increasing. The hydraulic structures are designed according to its purpose and performance, and the amount of flood is an important calculation factor. However, in Korea, design rainfall is used as input data for hydrological analysis for the design of hydraulic structures due to the lack of sufficient data and the lack of reliability of observation data. Accurate probability rainfall and its temporal distribution are important factors to estimate the design rainfall. In practice, the regression equation of temporal distribution for the design rainfall is calculated using the cumulative rainfall percentage of Huff's quartile method. In addition, the 6th order polynomial regression equation which shows high overall accuracy, is uniformly used. In this study, the optimized regression equation of temporal distribution is derived using the variable selection method according to the principle of parsimony in statistical modeling. The derived regression equation of temporal distribution is verified through the significance test. As a result of this study, it is most appropriate to derive the regression equation of temporal distribution using the stepwise selection method, which has the advantages of both forward selection and backward elimination.

Cumulative Deposition of $^{137}Cs$ in the Soil of Korea (한국토양에 존재하는 $^{137}Cs$ 방사능 분포)

  • Lee, Myung-Ho;Choi, Yong-Ho;Shin, Hyun-Sang;Kim, Sang-Bog;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.2
    • /
    • pp.97-102
    • /
    • 1998
  • The cumulative deposition of $^{137}Cs$ in the soil of Korea has been studied. Using ${\gamma$-ray spertrometry, the conrentrations of $^{137}Cs$ were determined for the soil samples collected to a depth of 20 cm. The average accumulated depositions of $^{137}Cs$ were estimated roughly to be 2,501 ${\pm}$ $m^{-2}$ in the forest and 1,058 ${\pm}$ 322 Bq $m^{-2}$ in the hill. The inventory value of $^{137}Cs$ in the forest is about two times higher than that in the hill. Except for some cases, the concentrations of $^{137}Cs$ in the undisturbed soils decreased exponentially with increasing the soil depth. The influences of rainfall, organic matter content, clay content and pH on the deposition of $^{137}Cs$ were studied using the field method. Among these factors, the organic matter content played the most important role in the retention and relative mobility of $^{137}Cs$ in the soil. The other factors such as rainfall, clay content and pH showed weak correlation with the deposition of $^{137}Cs$ in the soil.

  • PDF

Characteristics of Stormwater Runoff from Urban areas with Industrial Complex (산업단지의 도시 강우유출수 배출 특성)

  • Jung, Yong-Jun;Kim, Si-Won
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.131-137
    • /
    • 2012
  • This study was investigated to characterize the stormwater runoff pollutant materials from the urban area mixed with industrial area. Almost the similar rainfall pattern is shown during the 5 years, and the yearly precipitation was 5.2~6.6 mm. The first flushing effect during the early-stage rainfall-run off was observed in some events. EMC ranges are 19.3~39.9 mg/L for BOD, 45.2~190 mg/L for CODcr, 67.2~351 mg/L for TSS, 3.6~10.3 mg/L for TN, 1.2~2.5 mg/L for TP. Heavy metal are not detected except Zn which is observed at only one event. The particle size was distributed to 10 ${\mu}m$ at the 3% weight volume and the 50% cumulative weight percent was shown at 12 ${\mu}m$.

A Study on the Performance Prediction Technique for Small Hydro Power Plants (소수력발전소의 성능예측 기법)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • This paper presents the methodology to analyze flow duration characteristics and performance prediction technique for small hydro power(SHP) Plants and its application. The flow duration curve can be decided by using monthly rainfall data at the most of the SHP sites with no useful hydrological data. It was proved that the monthly rainfall data can be characterized by using the cumulative density function of Weibull distribution and Thiessen method were adopted to decide flow duration curve at SHP plants. And, the performance prediction technique has been studied and development. One SHP plant was selected and performance characteristics was analyzed by using the developed technique, Primary design specfications such as design flowrate, plant capacity, operational rate and annual electricity production for the SHP plant were estimated, It was found that the methodology developed in this study can be a useful tool to predict the performance of SHP plants and candidate sites in Korea.

Analysis of Unsaturated Flow Considering Hysteresis in Porous Media under Antecedent Rainfall (선행강우가 존재하는 다공성 매질에서 이력현상을 고려한 비포화 흐름 해석)

  • Park, Chang Kun;Sonu, Jung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1137-1143
    • /
    • 1994
  • Through the numerical analysis of the capillary pressure-based Richards equation with and without the effect of the capillary hysteresis under the boundary condition having an antecedent rainfall. the moving tendency of the wetting front, the redistribution of the moisture content, infiltration rate, cumulative infiltration etc, were computed. The effect of the capillary hysteresis cannot be neglected in analyzing an unsaturated flow, and the more accurate results may be obtained by the consideration of the hysteresis effect. If the effect of the hysteresis cannot be considered, the analysis by the use of the main wetting curve may give more reliable result than that of the main drying curve.

  • PDF