• Title/Summary/Keyword: cucurbit

Search Result 61, Processing Time 0.026 seconds

Post-conditioning Periods and Seed Orientation Affects the Vigor of Cucurbit Seeds with Dry-heat Treatment (건열처리에 따른 박과채소종자의 활력 회복)

  • Choi, Byung-Soon;Lee, Jung-Myung;Choi, Geun-Won
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • We investigate the effect of post-conditioning periods and seed orientation on the vigor of cucurbit seeds with dry heat treatment (DHT). All the dry-heat treated seeds exhibited varying degree of seed vigor decreases. In general, pumpkin seeds showed less vigor decreases than the bottle gourd seeds. When the dry heat treated seeds were germinated after post-conditioning for 0, 30, and 120 days, the percentage of germination was enhanced by increasing the period of post-conditioning and the efficiency of post-conditioning differed by crop and cultivar. In both bottle gourd and pumpkin, the vigor of seeds placed in vertically upward and horizontal orientations was higher than that of the seeds placed in the vertically downward orientation. The results suggested that the vigor of dry-heat treated seeds could be improved by applying the proper post-conditioning and seed orientation.

Nucleotide Sequence of Coat Protein Gene of Kyuri Green Mottle Mosaic Virus Isolated from Zucchini

  • Lee, Su-Heon;Lee, Young-Gyu;Park, Jin-Woo;Park, Hong-Soo;Kim, Yeong-Tae;Cheon, Jeong-Uk;Lee, Key-Woon
    • The Plant Pathology Journal
    • /
    • v.16 no.2
    • /
    • pp.118-124
    • /
    • 2000
  • The coat protein (CP) gene of kyuri green mottle mosaic virus zucchini strain (KGMMV-Z) isolated from zucchini (Cucurbita pepo) in Chonfu, Korea in 1999 was sequenced by the reverse transcription and polymerase chain reaction with degenerate and generate primers originated from tobamoviruses. The degenerate primers were very effective in amplification of KGMMV-Z CP region. The KGMMV-Z CP gene consisted of 486 nucleotides and had the same nucleotide length compared with those of cucurbit-infecting tobamoviruses. KGMMV-Z CP gene shared 43.8, 44.2, and 44.4% nucleotide sequence similarity with the CP gene of cucumber green mottle mosaic virus watermelon strain (CGMMZ-W), CGMMV-KW1, and CGMMV-SH, respectively, whereas three CGMMV strains among themselves showed 98.6-99.6% nucleotide similarity. The deduced amino acids of KGMMV-Z CP gene were 161 amino acid residues with the molecular weight of 17,181 daltons. The first 24 codons of KGMMV-Z CP gene corresponded to the sequences of the N-terminal amino acid of the viral capsid protein. The amino acid sequences of KGMMV-Z CP had 45.3% similarity compared with those of three CGMMV strains. However, the amino acid sequences of CGMMV strains were identical. These results showed that two cucurbit-infecting tobamovirus members, KGMMV-Z and CGMMV were genetically distantly related.

  • PDF

First Report of Zucchini yellow mosaic virus on Hollyhock (Althaea rosea)

  • Park, Won-Mok;Park, Seung-Kook;Yoon, Ju-Yeon;Ryu, Ki-Hyun;Park, Jang-Kyung
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.121-125
    • /
    • 2002
  • This study was conducted to determine the causal virus that naturally infected hollyhock (Althaea rosea) plant showing mild mosaic symptom in 1999. Flexuous virus particles were found in the cytoplasm of plant tissue from infected hollyhock under transmissible electron microscopy. A virus from the genus Potyvirus under the family Potyviridae was isolated and was maintained on Chenopodium quinoa for three passages. Chlorotic local legions were used to inoculate 20 species of indicator plants. The virus infected all the tested cucurbit plants, but failed to infect Nicotiana benthamiana. Based on the host range test and RT-PCR analysis, the potyvirus was identified as a strain of Zucchini yellow mosaic virus-A (ZYMV-A), one of the major pathogens of cucurbits. Infectivity analysis showed that ZYMV-A induced faster systemic symptom than ZYMV-Cu on squash and other cucurbit plants, suggesting that ZYMV-A was a more severe strain. To better characterize ZYMV-A, Western blot assay was carried rout to the coat protein (CP) of the virus using ZYMV-specific antiserum with ZYMV-Cu and other potyviruses. The CP of the virus reacted strongly with the antiserum against ZYMV, and other tested antisera did not react with the CP of ZYMV-A. Results strongly suggest that the potyvirus infecting hollyhock was a novel strain of ZYMV. This is the first report on ZYMV as the causal virus infecting hollyhock in Korea.

Triplex Virion Capture (VC)/RT-PCR for Three Seed Transmissible Tobamoviruses of CGMMV, ZGMMV and KGMMV Occurring on Cucurbitaceae (박과 작물 종자전염 바이러스 3종(CGMMV, ZGMMV, KGMMV)의 간편한 동시진단 VC/RT-PCR 유전자 진단)

  • Cho, Jeom-Deog;Kim, Jeong-Soo;Lee, Sin-Ho;Chung, Bong-Nam
    • Research in Plant Disease
    • /
    • v.13 no.2
    • /
    • pp.82-87
    • /
    • 2007
  • The genetic diagnostic method of virion capture (VC)/RT-PCR was developed for the simultaneous detection of three rod shaped viruses of Cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus(KGMMV) and Zucchini green mottle mosaic virus (ZGMMV) transmitted by seed in Cucurbit. Out of 12 primer combinations for the three tobamoviruses, a primer set of CGMMV-C724, KGMMV-K513 and ZGMMV-Z407A was useful for mono and triplex VC/RT-PCR. The triplex VC/RT-PCR for the three tobamovirus in Cucurbit could detect specifically without interference among primers and/or plant species of watermelon, gourd, cucumber, melon, pumpkin, squash and Nicotiana benthamiana.

Simultaneous Detection of Three Tobamoviruses in Cucurbits by Rapid Immunofilter Paper Assay

  • Park, Gug-Seoun;Kim, Jae-Hyun;Chung, Bong-Nam;Kim, Hyun-Ran;Park, Yong-Mun
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.106-109
    • /
    • 2001
  • A multi-rapid immunofilter paper assay (multi-RIPA) system was prepared for simultaneous diagnosis of three Tobamoviruses, Cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus (KGMMV), and Zucchini green mottle mosaic virus (ZGMMV) in cucurbitaceous crops. Each of these viruses was specifically detected by the multi-RIPA from cucumber, watermelon, zucchini, and bottle gourd inoculated with the three Tobamoviruses singly or in combination. The three viruses could infect cucumber, watermelon, and bottle gourd ; however, CGMMV could not infect zucchini as the latex-coated CGMMV antibody showed a negative reaction in the multi-RIPA of the virus-infected plant extract. When the minimum detection level of multi-RIPA was compared with that of double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) using CGMMV, the latter was 10 times more sensitive than the former. The detection limit of the multi-RIPA for the purified CGMMV was 50 ng/ml. In a survey of the threeviruses in cucurbits growing in commercial fields in 1999 and 2000, CGMMV was detected in watermelon and cucumber, and ZGMMV was detected only in zucchini growing in plastic houses at the suburbs of Chonju, Korea. However, KGMMV was not found in the commercially growing cucurbit crops in our study, The results suggest that the multi-RIPA can be a simple, rapid, specific and convenient tool to detect simultaneously the Tobamoviruses.

  • PDF

Complete Genome Sequences and Evolutionary Analysis of Cucurbit aphid-borne yellows virus Isolates from Melon in Korea

  • Kwak, Hae-Ryun;Lee, Hee Ju;Kim, Eun-A;Seo, Jang-Kyun;Kim, Chang-Seok;Lee, Sang Gyu;Kim, Jeong-Soo;Choi, Hong-Soo;Kim, Mikyeong
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.532-543
    • /
    • 2018
  • Complete genome sequences of 22 isolates of Cucurbit aphid-borne yellows virus (CABYV), collected from melon plants showing yellowing symptom in Korea during the years 2013-2014, were determined and compared with previously reported CABYV genome sequences. The complete genomes were found to be 5,680-5,684 nucleotides in length and to encode six open reading frames (ORFs) that are separated into two regions by a non-coding internal region (IR) of 199 nucleotides. Their genomic organization is typical of the genus Polerovirus. Based on phylogenetic analyses of complete nucleotide (nt) sequences, CABYV isolates were divided into four groups: Asian, Mediterranean, Taiwanese, and R groups. The Korean CABYV isolates clustered with the Asian group with > 94% nt sequence identity. In contrast, the Korean CABYV isolates shared 87-89% sequence identities with the Mediterranean group, 88% with the Taiwanese group, 81-84% with the CABYV-R group, and 72% with another polerovirus, M.. Recombination analyses identified 24 recombination events (12 different recombination types) in the analyzed CABYV population. In the Korean CABYV isolates, four recombination types were detected from eight isolates. Two recombination types were detected in the IR and P3-P5 regions, respectively, which have been reported as hotspots for recombination of CABYV. This result suggests that recombination is an important evolutionary force in the genetic diversification of CABYV populations.