• Title/Summary/Keyword: cubesat specifications

Search Result 2, Processing Time 0.015 seconds

Life Prediction of Failure Mechanisms of the CubeSat Mission Board using Sherlock of Reliability and Life Prediction Tools (신뢰성 수명예측 도구 Sherlock을 이용한 큐브위성용 임무보드의 고장 메커니즘별 수명예측)

  • Jeon, Su-Hyeon;Kwon, Yae-Ha;Kwon, Hyeong-Ahn;Lee, Yong-Geun;Lim, In-OK;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.172-180
    • /
    • 2016
  • A cubesat classified as a pico-satellite typically uses commercial-grade components that satisfy the vibration and thermal environmental specifications and goes into mission orbit even after undergoing minimum environment tests due to their lower cost and short development period. However, its reliability exposed to the physical environment such as on-orbit thermal vacuum for long periods cannot be assured under minimum tests criterion. In this paper, we have analysed the reliability and life prediction of the failure mechanisms of the cubesat mission board during its service life under the launch and on-orbit environment by using the sherlock software which has been widely used in automobile fields to predict the reliability of electronic devices.

Earth Albedo perturbations on Low Earth Orbit Cubesats

  • Khalifa, N.S.;Sharaf-Eldin, T.E.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.193-199
    • /
    • 2013
  • This work investigates the orbital perturbations of the cubesats that lie on LEO due to Earth albedo. The motivation for this paper originated in the investigation of the orbital perturbations for closed- Earth pico-satellites due to the sunlight reflected by the Earth (the albedo). Having assumed that the Sun lies on the equator, the albedo irradiance is calculated using a numerical model in which irradiance depends on the geographical latitude, longitude and altitude of the satellite. However, in the present work the longitude dependency is disregarded. Albedo force and acceleration components are formulated using a detailed model in a geocentric equatorial system in which the Earth is an oblate spheroid. Lagrange planetary equations in its Gaussian form are used to analyze the orbital changes when $e{\neq}0$ and $i{\neq}0$. Based on the Earth's reflectivity data measured by NASA Total Ozone Mapping Spectrometer (TOMS project), the orbital perturbations are calculated for some cubesats. The outcome of the numerical test shows that the albedo force has a significant contribution on the orbital perturbations of the pico-satellite which can affect the satellite life time.