• Title/Summary/Keyword: crystalline silicon

Search Result 671, Processing Time 0.026 seconds

The Crystalline Quality of Si Films Prepared by Thermal- and Photo-CVD at Low Temperatures

  • Chung, Chan-Hwa;Rhee, Shi-Woo;Moon, Sang-Heup
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.34-39
    • /
    • 1995
  • Various silicon films were prepared by thermal- and UV photo-CVD processes. The reactants were SiH4, Si2H6, SiH2F2, SIF4, and H2. Silicon films grown at temperatures below $500 ^{\circ}C$ were either amorphous or crystalline depending on the process conditions, and the growth rates ranged between 5 and $80\AA$min. Crystallinity of the film was improved even at $250^{\circ}C$ when the film was grown by photo-CVD using fluoro-silanes as the reactants. Analysis of the film by RBS, SIMS, XRD, and ex-situ IR indicated that substrate surface was contaminated by oxygen and other impurities when the reactants contained neither hydrogen nor fluoro-silnanes, but when fluoro-silanes were used as reactants the silicon film was highly crystalline.

  • PDF

Application Possibility of Mono-Crystalline Silicon Solar Cell for Photovoltaic Concentrating System (단결정 실리콘 태양전지의 집광형 시스템으로의 적용 가능성)

  • Kang, Kyung-Chan;Kang, Gi-Hwan;Yu, Gwon-Jong;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.22-23
    • /
    • 2007
  • We tried to find the possibility of mono-crystalline silicon solar cell for photovoltaic concentrating system which is major cost portion for PV system using fresnel lens. With solar simulator and I-V curve tracer, we analyzed maximum output characteristics and measured the temperature of concentrated area using infrared camera. Because of temperature increase, there was no merit when concentrating. But at low radiant power, it showed more efficient operation. The combination of heat-sink technology and tracking system to our concentrating PV system would give better performance results.

  • PDF

Screen Printing Method on Crystalline Silicon Solar Cells : A Review (결정질 실리콘 태양전지에 적용될 스크린 프린팅 기술 개발 동향 : 리뷰)

  • Jeon, Young Woo;Jang, Min Kyu;Kim, Min Je;Yi, Jun Sin;Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • v.10 no.3
    • /
    • pp.90-94
    • /
    • 2022
  • The screen-printing method is the most mature solar cell fabrication technology, which has the advantage of being faster and simpler process than other printing technology. A front metallization printed through screen printing influences the efficiency and manufacturing cost of solar cell. Recent technology development of crystalline silicon solar cell is proceeding to reduce the manufacturing cost while improving the efficiency. Therefore, screen printing requires process development to reduce a line width of an electrode and decrease shading area. In this paper, we will discuss the development trend and prospects of screen-printing metallization using metal paste, which is currently used in manufacturing commercial crystalline silicon solar cells.

Surface passivation study of a-Si:H/c-Si heterojunction solar cells using VHF-CVD (VHF-CVD를 이용한 a-Si:H/c-Si 이종접합태양전지 표면 패시배이션 연구)

  • Song, JunYong;Jeong, Daeyoung;Kim, Kyoung Min;Park, Joo Hyung;Song, Jinsoo;Kim, Donghwan;Lee, JeongChul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.128.1-128.1
    • /
    • 2011
  • In amorphous silicon and crystalline silicon(a-Si:H/c-Si) heterojuction solar cells, intrinsic hydrogenated amorphous silicon(a-Si:H) films play an important role to passivate the crystalline silicon wafer surfaces. We have studied the correlation between the surface passivation quality and nature of the Si-H bonding at the a-Si:H/c-Si interface. The samples were obtained by VHF-CVD under different deposition conditions. The passivation quality and analysis of all structures studied was performed by means of quasi steady state photoconductance(QSSPC) methods and fourier transform infrared spectrometer(FTIR) measurements respectively.

  • PDF

Deposition and Photoluminescence Characteristics of Silicon Carbide Thin Films on Porous Silicon (다공성실리콘 위의 탄화규소 박막의 증착 및 발광특성)

  • 전희준;최두진;장수경;심은덕
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.486-492
    • /
    • 1998
  • Silicon carbide (SiC) thin films were deposited on the porous silicon substrates by chemical vapour de-position(CVD) using MTS as a source material. The deposited films were ${\beta}$-SiC with poor crystallity con-firmed by XRD measurement. It was considered that the films showed the mixed characteistics of cry-stalline and amorphous SiC where amorphous SiC where amorphous SiC played a role of buffer layer in interface between as-dep films and Si substrate. The buffer layer reduced lattice mismatch to some extent the generally occurs when SiC films are deposited on Si. The low temperature (10K) PL (phtoluminescence) studies showed two broad bands with peaks at 600 and 720 for the films deposited at 1100$^{\circ}C$ The maximum PL peak of the crystalline SiC was observed at 600 nm and the amrophous SiC of 720 nm was also confirmed. PL peak due the amorphous SiC was smaller than that of the crystalline SiC, PL of porous Si might be disapperared due to densification during heat treatment.

  • PDF

Present Status and Prospects of Thin Film Silicon Solar Cells

  • Iftiquar, Sk Md;Park, Jinjoo;Shin, Jonghoon;Jung, Junhee;Bong, Sungjae;Dao, Vinh Ai;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.2 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • Extensive investigation on silicon based thin film reveals a wide range of film characteristics, from low optical gap to high optical gap, from amorphous to micro-crystalline silicon etc. Fabrication of single junction, tandem and triple junction solar cell with suitable materials, indicate that fabrication of solar cell of a relatively moderate efficiency is possible with a better light induced stability. Due to these investigations, various competing materials like wide band gap silicon carbide and silicon oxide, low band gap micro-crystalline silicon and silicon germanium etc were also prepared and applied to the solar cells. Such a multi-junction solar cell can be a technologically promising photo-voltaic device, as the external quantum efficiency of such a cell covers a wider spectral range.

Brief Review of Silicon Solar Cells (실리콘 태양전지)

  • Yi, Jun-Sin
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.161-166
    • /
    • 2007
  • Photovoltaic (PV) technology permits the transformation of solar light directly into electricity. For the last five years, the photovoltaic sector has experienced one of the highest growth rates worldwide (over 30% in 2006) and for the next 20 years, the average production growth rate is estimated to be between 27% and 34% annually. Currently the cost of electricity produced using photovoltaic technology is above that for traditional energy sources, but this is expected to fall with technological progress and more efficient production processes. A large scale production of solar grade silicon material of high purity could supply the world demand at a reasonably lower cost. A shift from crystalline silicon to thin film is expected in the future. The technical limit for the conversion efficiency is about 30%. It is assumed that in 2030 thin films will have a major market share (90%) and the share of crystalline cells will have decreased to 10%. Our research at Sungkyunkwan University of South Korea is confined to crystalline silicon solar cell technology. We aim to develop a technology for low cost production of high efficiency silicon solar cell. We have successfully fabricated silicon solar cells of efficiency more than 16% starting with multicrystalline wafers and that of efficiency more than 17% on single crystalline wafers with screen printing metallization. The process of transformation from the first generation to second generation solar cell should be geared up with the entry of new approaches but still silicon seems to remain as the major material for solar cells for many years to come. Local barriers to the implementation of this technology may also keep continuing up to year 2010 and by that time the cost of the solar cell generated power is expected to be 60 cent per watt. Photovoltaic source could establish itself as a clean and sustainable energy alternate to the ever depleting and polluting non-renewable energy resource.

Study of Low Reflectance and RF Frequency by Rie Surface Texture Process in Multi Crystall Silicon Solar Cells (공정가스와 RF 주파수에 따른 웨이퍼 표면 텍스쳐 처리 공정에서 저반사율에 관한 연구)

  • Yun, Myoung-Soo;Hyun, Deoc-Hwan;Jin, Beop-Jong;Choi, Jong-Young;Kim, Joung-Sik;Kang, Hyoung-Dong;Yi, Jun-Sin;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.114-120
    • /
    • 2010
  • Conventional surface texturing in crystalline silicon solar cell have been use wet texturing by Alkali or Acid solution. But conventional wet texturing has the serious issue of wafer breakage by large consumption of wafer in wet solution and can not obtain the reflectance below 10% in multi crystalline silicon. Therefore it is focusing on RIE texturing, one method of dry etching. We developed large scale plasma RIE (Reactive Ion Etching) equipment which can accommodate 144 wafers (125 mm) in tray in order to provide surface texturing on the silicon wafer surface. Reflectance was controllable from 3% to 20% in crystalline silicon depending on the texture shape and height. We have achieved excellent reflectance below 4% on the weighted average (300~1,100 nm) in multi crystalline silicon using plasma texturing with gas mixture ratio such as $SF_6$, $Cl_2$, and $O_2$. The texture shape and height on the silicon wafer surface have an effect on gas chemistry, etching time, RF frequency, and so on. Excellent conversion efficiency of 16.1% is obtained in multi crystalline silicon by RIE process. In order to know the influence of RF frequency with 2 MHz and 13.56 MHz, texturing shape and conversion efficiency are compared and discussed mutually using RIE technology.

Investigation of the crystalline silicon solar cells with porous silicon layer (다공성 실리콘 막을 적용한 결정질 실리콘 태양전지 특성 연구)

  • Lee, Eun-Joo;Lee, Il-Hyung;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.295-298
    • /
    • 2007
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

  • PDF